MODI: Mobile Deep Inference
Made Efficient by Edge Computing

Samuel S. Ogden
Tian Guo
Sneak Peek

• Aim is to be a dynamic solution to a dynamic problem that has previously been solved statically
Background – Mobile Inference

• Using deep learning models in mobile application
 – Increasingly common to use deep learning models within mobile applications
 ▪ Image recognition
 ▪ Speech recognition

• Two major metrics
 – Model Accuracy
 – End-to-end latency

• On-device vs. Remote inference
Mobile Deep Inference Limitations

• Highly constrained resource models
 ─ Battery constraints
 ─ Lack of limited hardware in general case

• Highly dynamic environment
 ─ Variable network conditions

• Common approaches are statically applied
 ─ Choosing a one-size-fits-all model for on-device inference
 ─ Using the same remote API for all inference requests
Our Vision: MODI

• How do we balance accuracy and latency based on dynamic constraints?

• Provide a wide array of models
 — Model-usage families and derived models

• Dynamically choose inference location and model
 — Make decision based on inference environment
 ▪ e.g., network, power, model availability

• Make the choice transparent
MODI: System design

MODI
On-device Inference

Mobile Device
MODI: System design

- On-device Inference
- Remote inference

Mobile Device

Requests
Response
Metadata

Edge Servers
MODI: System design

- MODI On-device Inference
- Requests
- Response
- Metadata
- MODI Remote inference
- Edge Servers
- Central Manager
- MODI Models & Stats
- Models
- Metadata

Mobile Device

ssogden@wpi.edu - MODI
Design Principles

• Maximize usage of on-device resources

• Storage and analysis of metadata

• Dynamic model selection
Design Questions

• Which compression techniques are useful?

• Which model versions to store where?

• When to offload to edge servers?
Design Questions

• Which compression techniques are useful?

• Which model versions to store where?

• When to offload to edge servers?
Results – Model Compression

InceptionV3 image classification model\(^1\) running on a Google Pixel2 device

Storage requirements reduced by 75% for quantized models

\(^1\)https://arxiv.org/abs/1512.00567
Results – Model Compression

InceptionV3 image classification model\(^1\) running on a Google Pixel2 device

Load time **reduced by up to 66%**

– Leads to \(\sim 6\%\) reduction in accuracy

\(^1\)https://arxiv.org/abs/1512.00567
Design Questions

• Which compression techniques are useful?
 – Quantization and gzip significantly reduce model size

• Which model versions to store where?

• When to offload to edge servers?
Results – Model Comparison across devices

InceptionV3 image classification model optimized for inference

Pixel2 over 2.5x faster than older devices
– Specialized deep-learning hardware
Design Questions

• Which compression techniques are useful?
 – Quantization and gzip significantly reduce model size

• Which model versions to store where?
 – Mobile devices can reduce runtime up to 2.4x

• When to offload to edge servers?
Results – Inference Offloading Feasibility

used AWS t2.medium instance running InceptionV3

Network transfer is up to 66.7% of end-to-end time
Design Questions

• Which compression techniques are useful?
 — Quantization and gzip significantly reduce model size

• Which model versions to store where?
 — Mobile devices can reduce runtime up to 2.4x

• When to offload to edge servers?
 — Slower networks would hinder remote inference
Conclusions & Questions

• Key points:
 – MODI allows for dynamic mobile inference model selection through post-training model management
 – Enables greater flexibility for mobile deep inference

• Controversial:
 – Whether using a low-tier AWS instance is similar to edge

• Looking forward:
 – Integrating MODI with existing deep learning frameworks
 – Explore explicit trade-off points between on-device and remote inference
 – Exploring how far in the edge is ideal for remote inference
 – What other devices could this be used for?