ShadowNet: Towards preventing IoT DDoS from the Edge

Ketan Bhardwaj, Joaquin Chung Miranda, Ada Gavrilovska
Today’s Problem: IoT DDoS

- KrebsOnSecurity (Sept ’16), Dyn (Oct’16), ...
- Used IP cams, home routers (IoT devices)
- Use of weak passwords

DDoS using Mirai botnet on IoT devices
The Root Cause: Insecure Devices

- Malicious botnets infecting devices
- Accidental lapses in security policy enforcing

Let's face it!

It is impossible to ensure every device will always be secure
DDoS: Old Problem - New Face

• Have been around for **more than a decade**
 • Absorb DDoS attacks, counter IP spoofing, harden systems, firewalls, IDPS, load balancing, active resource monitoring ...

• Recent DDoS attacks are application level attacks using IoT devices
 • We call them -- **IoT-DDoS**

• Bots uses massive amounts of **seemingly legitimate** traffic
 • Extremely challenging to classify as malicious traffic
Some Interesting Observations

• **Damage is done** at the time existing solutions can help
 • Existing detection & mitigation require the attack to be in progress

• Only way forward (our goal) is to **prevent** attack from happening

• Well known that **prevention** is best near the source of the attack
Edge Computing

Lower Latency

Lower Backhaul Bandwidth

Lower Cost

The Edge

(Cellular Base stations, Enterprise, Personal)

Data centers

Edge Functions

IoT

Confidential
Can Edge Computing Help?

• Edge infrastructure is **closest** to the source of IoT-DDoS
 • A new vantage point for IoT-DDoS prevention

BUT

• A single edge location (function) has **limited visibility**
 • To be able to detect a IoT-DDoS

• Edge infrastructure at a location has **constrained** resources
 • To be able to mitigate a IoT-DDoS
Key Idea

Only if all edge functions could inform a centralized service about the attack faster than attack itself using minimal resources.
ShadowNet System Overview

IoT Devices

Edge nodes running ShadowNet edge functions

New vantage point for DDoS Defense

Mobile Core

ISP

CDN

Cloud

ShadowNet fast-path

Old vantage points for DDoS Defense

Response-less

ShadowNet Service

Cloud

IoT Web Service
Design Elements

• Realizing fast-path for ShadowNet
 • Leveraging HW (network slicing) and SW mechanisms (lower protocol distance)

• Designing scalable ShadowNet service
 • Preferably over connection-less, response-less sink for shadow packets over fastpath

• Enabling efficient deployment of prevention and mitigation
 • Detection algorithms at ShadowNet service & just-in-time deployment
Up to 10x faster detection prevents 82% damage

• Setup: VMs on GENI platform with Openvswitch & sFlow monitoring
• Attacks generated using Bonesi: 252 attackers per edge function
• Bandwidth overhead UDP: 4.76 Mbps (0.62s), HTTP: 280 Kbps (2.46s)
• Resource overhead: +3.15% CPU, no perceivable memory overhead
Q/A, Feedback and Limitations

• Generalization of the idea: Knowing something before it happens
 • a unique and new property in networked systems

• Other potential use cases (?)
 • Faster ML inference/analytics, Faster perceived web page loading, ...

• The Achille’s heal: fast-path effectiveness