Compute Globally, Act Locally: Protecting Federated Systems from Systemic Threats

Arjun Narayan

Antonis Papadimitriou

Andreas Haeberlen

University of Pennsylvania
Motivation

• Interdependent systems are vulnerable to cascading failures.
 • Routing
 • Load balancing
 • Solving this often requires a global view.
 • This is a well known fact in the distributed systems world.
 • This insight can be generalized.
Motivation

Remember the 2008 Financial Crisis?

Why did nobody see it coming?

There was no global view.

Let me start with some background on banking.
What is Systemic Risk?

- Banks have some liquid reserves.
- A bank gains exposure to risk as part of its normal business. We can model these as hypothetical events.
- Banks want their net risk to be contained
- They offload surplus risk to other banks
- This creates a network of dependencies.
What could go wrong?

• Banks only have a local view

• So their local conclusions are vulnerable to **counterparty risk**
What could go wrong?

- Banks only have a local view
- So their local conclusions are vulnerable to **counterparty risk**
- Consider another upstream bank C that is faulty
- What happens?

![Diagram showing the sequence of payments and bank failures.](image-url)
What Now?

- This uncertainty creates a financial panic.
- But there is a solution!
- (Nobody likes that solution…)
- Is there another way?
How can we prevent this?

- We need an **early warning system** to measure systemic risk.
- Today we do individual bank-level stress tests.
 - But as we have seen, this is insufficient.
- We need a more comprehensive system that would:
 - Take information from every bank,
 - Compute **global** checks,
 - Output this to regulators.
System Wide Stress Testing

- What would a test compute?
- We are not economists.
- However, economists have thought about this question!
- Models exist.
- They know what to compute…
- … but they don’t know how.

The system is not safe!

- Bank A: $10
 - If X happens, pay $25
- Bank B: $10
 - If X happens, pay $10
- Bank C: $0
 - If X happens, pay $10
System Wide Stress Testing

- How do we conduct systemic stress tests?
- Idea: Give all the data to a central regulator.
- Doesn’t work, because that is too much power for one party.
System Wide Stress Testing

- How do we conduct **systemic** stress tests?

- Idea: Give all the data to a central regulator.

- Doesn’t work, because that is too much power for one party.

- This doesn’t scale.

- Is still not necessarily private.
Building an Early Warning System

- We want to build a **distributed system** that tells us if the system as a whole is risky.

- **Challenge 1: Privacy**
 - The output of the computation should protect the banks’ proprietary information.

- **Challenge 2: Scalability**
 - The system should be scalable to hundreds of banks.

Diagram:

- Bank A: $10
 - If X happens, pay $25
- Bank B: $10
 - If X happens, pay $10
- Bank C: $0
 - I know C owes B…
 - Aha! So C is vulnerable.

Note:

- The system is not safe!
Our Approach

- Each bank has an associated node.
- The nodes run a series of multiparty computations.
- We can exploit the fact that these algorithms are graph algorithms with limited degree.
- The output of the computation is **differentially private**.
- So how do we do this?

The system has a shortfall of about $3.50.
Outline

• Motivation

• The Case for Systemic Stress Testing

• Building an Early Warning System

• Background:
 Differential Privacy
 Economic Models

• Our Approach:
 Limited MPC
 Secret Sharing

• Status
Background: Differential Privacy

- Provides **provable** privacy guarantees. (Dwork, Nissim, McSherry, Smith 2006)

- Protects against **auxiliary information** attacks.
 - This is very important!
 - Netflix deanonymization.
 - AOL deanonymization.

- This is hard to reason about!

Q: Is the system safe

Yes.
Background: Differential Privacy

- Provides **provable** privacy guarantees. (Dwork, Nissim, McSherry, Smith 2006)

- Protects against **auxiliary information** attacks.

 - This is very important!

 - Netflix deanonymization.

 - AOL deanonymization.

- This is hard to reason about!
Background: Differential Privacy

- Provides **provable** privacy guarantees. (Dwork, Nissim, McSherry, Smith 2006)

- Protects against **auxiliary information** attacks.
 - This is very important!
 - Netflix deanonymization.
 - AOL deanonymization.

- This is hard to reason about!

Q: Is the system safe?

OK, let's make a new contract with A.

No.
Background: Differential Privacy

- Provides **provable** privacy guarantees. (Dwork, Nissim, McSherry, Smith 2006)

- Protects against **auxiliary information** attacks.
 - This is very important!
 - Netflix deanonymization.
 - AOL deanonymization.

- This is hard to reason about!

AHA! A is vulnerable!
Background: Differential Privacy

- Provides **provable** privacy guarantees. (Dwork, Nissim, McSherry, Smith 2006)

- Protects against **auxiliary information** attacks.

- Works by adding a little noise to answers.

 - Noise thwarts adversaries looking to exploit edge cases.

 - What we care about are large effects, so the noise is okay.

The system is not safe...ish

$0 \pm \$5$

\star

0 100 billion
Background: The Structure of Economic Models

- There are many economic models of financial crises.
- They roughly have the same structure:
 - Simulate “what-if” scenarios on bank connections,
 - and compute how much trouble the system is in.
A Closer Look

- The algorithm I’ve presented is a simplified version of Eisenberg and Noe, 2001.

- Intuitively what it does is it plays through what would happen if the event were to occur.

- But this is really a graph algorithm:
 - Initialization
 - Communication
 - State Update
 - Aggregation

- Nice properties:
 - Convergence to unique solution,
 - Termination in linear number of iterations.
A Closer Look

• The algorithm I’ve presented is a simplified version of Eisenberg and Noe, 2001.

• Intuitively what it does is it plays through what would happen if the event were to occur.

• But this is really a graph algorithm: Initialization, Communication, State Update, Aggregation.

• Nice properties: Convergence to unique solution, Termination in linear number of iterations.

3 bankruptcies
Computing These Models

- Naively computing matrix multiplications in MPC won’t work.
- Just as in PageRank…
- Iterative graph-based approaches are easier to execute…
- Especially when we take advantage of sparsity.

\[
\begin{pmatrix}
0 & $10 & 0 & $5 \\
0 & 0 & $15 & $10 \\
$10 & 0 & 0 & 0 \\
0 & 0 & $15 & 0 \\
\end{pmatrix}^T
\]
Computing These Models

- Naively computing matrix multiplications in MPC won’t work.
- Just as in PageRank…
- Iterative graph-based approaches are easier to execute…
- Especially when we take advantage of sparsity.
Design: Limited MPC

• MPC with all parties is prohibitively expensive.

• Instead, we do multiple MPCs with sets of k parties.

• All intermediate state exists only as secret shares.

• The final aggregation adds differential privacy.

The system is safe-ish.
Design: Secret Sharing

How do we keep the intermediate state private between MPC stages?

A’s MPC block

Outgoing secret shares

C’s MPC block

Incoming secret shares

Another MPC block downstream of A
Taking a step back…

- We have seen an important motivating scenario.
- We would have **Infrastructure** for privacy preserving graph-based computations.
- Banks can safely share their information with strong guarantees.
- Regulators can have a much better view into the system.
Status and Ongoing Work

- We are building an implementation.

- Looking at a couple of economic models of contagion detection from the economics literature.

- Working on automatically certifying algorithms as differentially private.

- Other possible domains: BotNet detection?
Summary

• Dependability is a broader challenge than technical systems.

• In this talk: dependability of the financial system.

• It has technical and economics aspects.

• Economists know what to compute, but not how.

• Key challenges: Privacy and Scalability.

• Our approach: exploit the graph structure, and use differential privacy