Jumpgate: In-Network Processing as a Service for Data Analytics

Craig Mustard, Fabian Ruffy, Anny Gakhokidze, Ivan Beschastnikh, Alexandra Fedorova
University of British Columbia
In-Network Processing **Can Accelerate Data Analytics**

- **Smart NICs (FPGAs)**: 96% increased throughput [Floem]
- **Programmable Switches (P4)**: 2-8x speedup [NetAccel, DAIET]
- >1000x less traffic [Sonata]
There are many places to do In-Network Processing.
There are many places to do In-Network Processing

- Storage Cluster
- NIC
- Programmable Switch
- Alternative Data Path
- Software Middleboxes
- 4.5x speedup [NetAgg]
- Compute Cluster
- NIC
- Programmable Switch
- Off-path Opportunities
 - NPUs
 - ASIC/FPGAs
 - Ephemeral VMs
There are many places to do In-Network Processing

- Off-path
- Opportunities
- Ephemeral VMs
- ASIC/FPGAs
- NPUs

There are many places to do In-Network Processing. There is a 2-16x speedup on Apache Spark when performing filter, project, shuffle, aggregation somewhere in the network.

4.5x speedup on [NetAgg]
Challenges to actually using NPs

Target Devices
- Switches
- Smart NICs
- Ephemeral VMs
- N(etwork) PUs
- FPGAs
- D(ata) PUs
- Storage System

→ Tough to program:
 - Diverse hardware
 - Requires high performance software
 - Packet-oriented NOT flow-oriented
 - Storage limits (e.g., very little cross-packet state)

→ Manage multiple devices at the same time
 - Specialized devices not good at all parts of a query

→ Integration with storage and analytics systems
 - Need suitable protocols and data formats for NPs to operate on data

See our paper or come talk to me for details!
How should we incorporate solutions into systems?

Target Devices
- Switches
- Smart NICs
- Ephemeral VMs
- N(etwork) PUs
- FPGAs
- D(ata) PUs
- Storage System
How should we incorporate? One (bad) option:

Target Devices

- Switches
- Smart NICs
- Ephemeral VMs
- N(etwork) PUs
- FPGAs
- D(ata) PUs
- Storage System
How should we incorporate? One (bad) option:

- **Target Devices**
 - Switches
 - Smart NICs
 - Ephemeral VMs
 - N(etwork) PUs
 - FPGAs
 - D(ata) PUs
 - Storage System

Problems:
- Not scalable to all analytics systems
- Not future-proof to new devices
- Hard to share code
Our proposal: Network Processing as a Service

Target Devices
- Switches
- Smart NICs
- Ephemeral VMs
- N(etwork) PUs
- FPGAs
- D(ata) PUs
- Storage System

Network Processing as a Service (NPaaS)
Our proposal: Network Processing as a Service

Advantages:

➔ Abstracts devices and management
➔ Existing systems need to change once
➔ New devices and systems can be added easily
Jumpgate: a prototype NPaaS, addressing three problems

1. **Abstraction**
 - Client API
 - read data
 - filter
 - proj.
 - group by

2. **Programmability**
 - Compiler
 - Maps logical to physical ops.
 - Physical Plan

3. **Management**
 - Orchestrator
 - Deploys NP pipelines

Available Physical Operators
- Filter + Project in Storage
- Shuffle in Switch
- Partial Agg in SW

Available Devices
- Virtual Machines
- Switches
- NICs
- NPUs

Deployment Constraints
Jumpgate: example deployment

Storage Cluster -> NIC -> Programmable Switch

Filter + Project in Storage

Original Data Path

NPUs
ASIC/FPGAs
Ephemeral VMs

Jumpgate Data Path

Client API

read data
proj.
filter
group by

SQL

Storage Cluster

Programmable Switch

Shuffle in Switch

Programmable Switch

NPUs
ASIC/FPGAs
Ephemeral VMs

Partial Agg in SW

Compute Cluster
Open Questions:

We plan to use Jumpgate to investigate these questions and more.

➔ What are the right protocols and formats to use for different NPs?
 ◆ Protocols and formats are dependent on NP restrictions

➔ What are the best devices, and what is the best offload strategy?
 ◆ How to adapt existing query optimizations?

➔ How should we allocate devices w.r.t network topology?
 ◆ How much do we need to know about the topology to compute a good plan?

➔ Failure handling
 ◆ How should NPaaS interact with the client application on failures?
 ◆ Propagate to the client, or automatic recovery?
Takeaways:

➔ In-network processors can be **on-demand accelerators** for data analytics tasks.
➔ But, large **challenges** remain to using them.
➔ Instead of building solutions into **every** analytics framework, **we need NPaaS to provide abstractions** for using NPs.
➔ Jumpgate is our NPaaS prototype to address API, compilation, and orchestration challenges, and to enable future research in this area.

Thanks for listening! Happy to talk more!

Questions?