# Accelerating Deep Learning Inference via Freezing

Adarsh Kumar, Arjun Balasubramanian, Shivaram Venkataraman, Aditya Akella



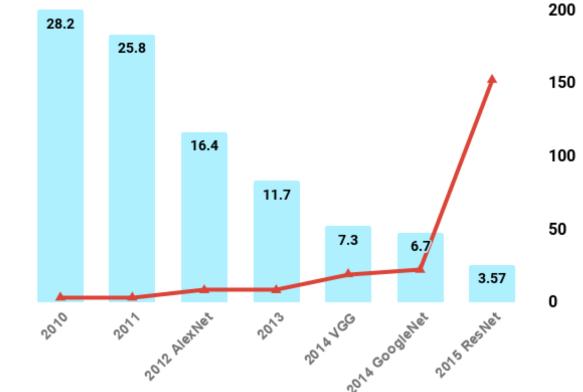


-ayers

Over the years

- Top 5 error rate decreasing -
- Models becoming deeper -

**Top Competitors - ImageNet Large Scale Visual Recognition Challenge** 



ayers.

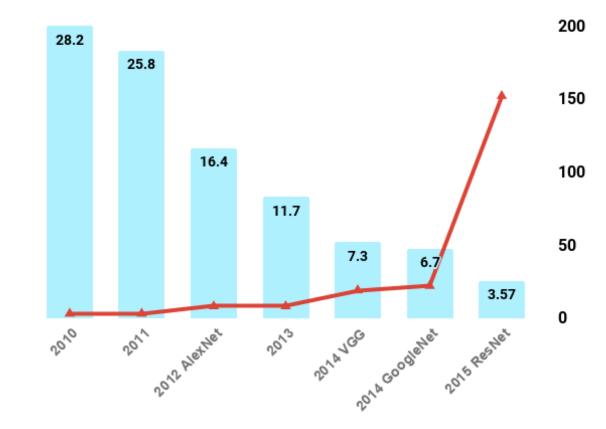
Over the years

- Top 5 error rate decreasing -
- Models becoming deeper -

Suits goals for ML training

**Top Competitors - ImageNet Large Scale Visual Recognition Challenge** 

Top-5 error



Top-5 error

Layers

Over the years

- Top 5 error rate decreasing
- Models becoming deeper

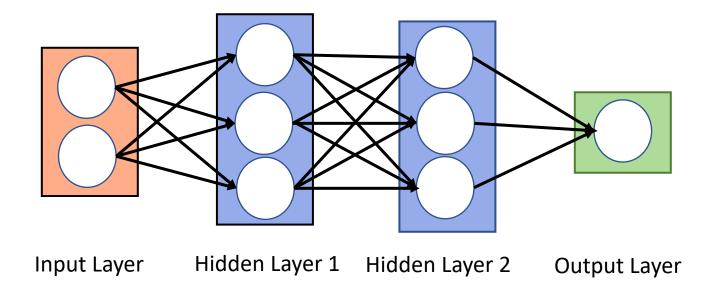
Suits goals for ML training

Not aligned with goals for ML inference

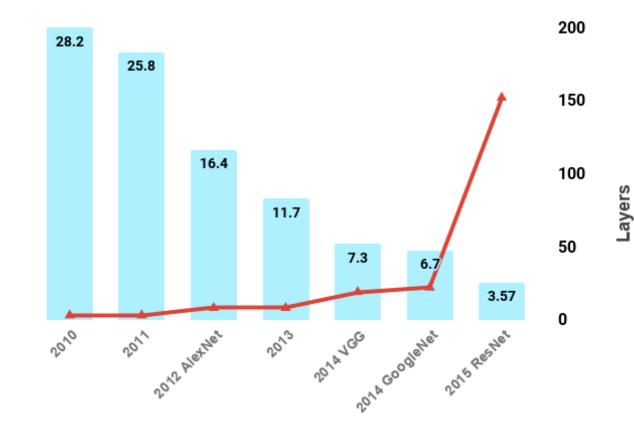
**Top Competitors - ImageNet Large Scale Visual Recognition Challenge** 

4

### **Deep Learning - Background**



Neural Network - Sequence of layers with each layer dependent on previous layers



Top-5 error

**Top Competitors - ImageNet Large Scale Visual Recognition Challenge** 

#### Not aligned with goals for ML inference

- Requires low latency
- Challenge due to deeper models





## **Deep Learning – Reducing Latency**

#### **Prior Solutions**

- Model Quantization: Changes precision of computation; Hurts accuracy
- Model Distillation: Smaller model is trained to mimic larger/ensemble model; Hurts accuracy
- Ensemble Methods: Run multiple models, choose best; Resources wasted
- Anytime Predictions: Auxiliary Predictions; Trade-off b/w accuracy and latency
- Custom Hardware: TPUs, FPGAs; Hardware dependent

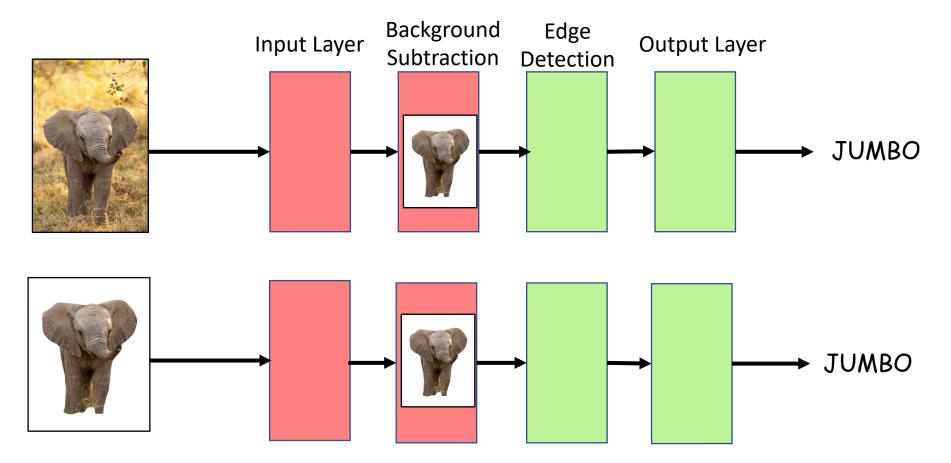
### **Freeze Inference**

Provides low-latency inference by caching intermediate layer outputs

Goals

- No trade-off on accuracy
- Resource efficient
- Hardware agnostic

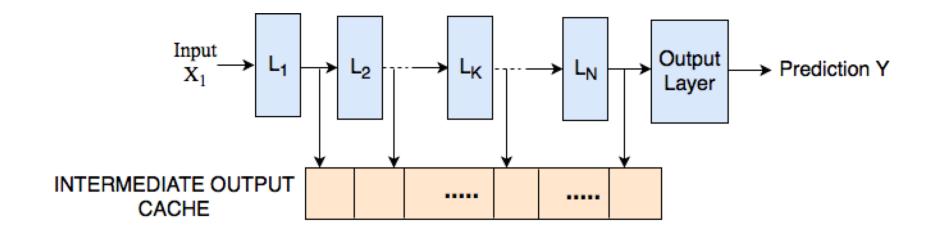
### **Freeze Inference – Key Insight**



Input to layer is not same for both images

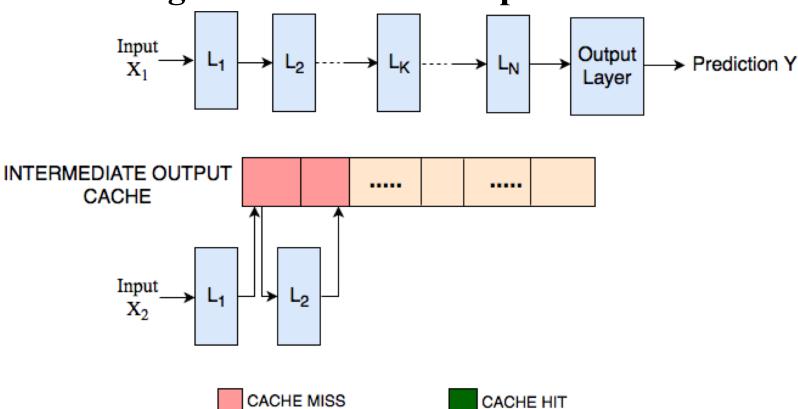
Input to layer is same for both images

**Prior to Inference - Cache intermediate layer outputs** 

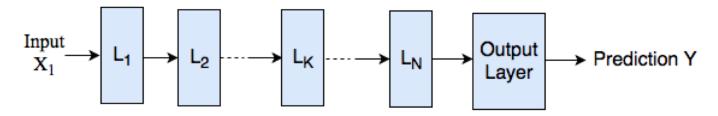


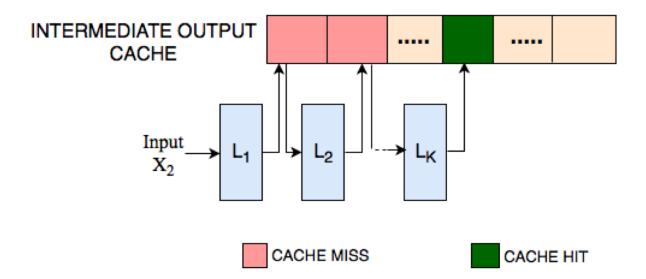
**During Inference – Look-up from cache**  $\begin{array}{c|c} \operatorname{Input} \\ X_1 \end{array} \rightarrow \begin{array}{c|c} L_1 \end{array} \rightarrow \begin{array}{c|c} L_2 \end{array} \xrightarrow{} \begin{array}{c|c} L_K \end{array} \xrightarrow{} \begin{array}{c|c} L_N \end{array} \rightarrow \begin{array}{c|c} \operatorname{Output} \\ Layer \end{array}$ Prediction Y INTERMEDIATE OUTPUT ... ... CACHE Input X<sub>2</sub> CACHE MISS CACHE HIT

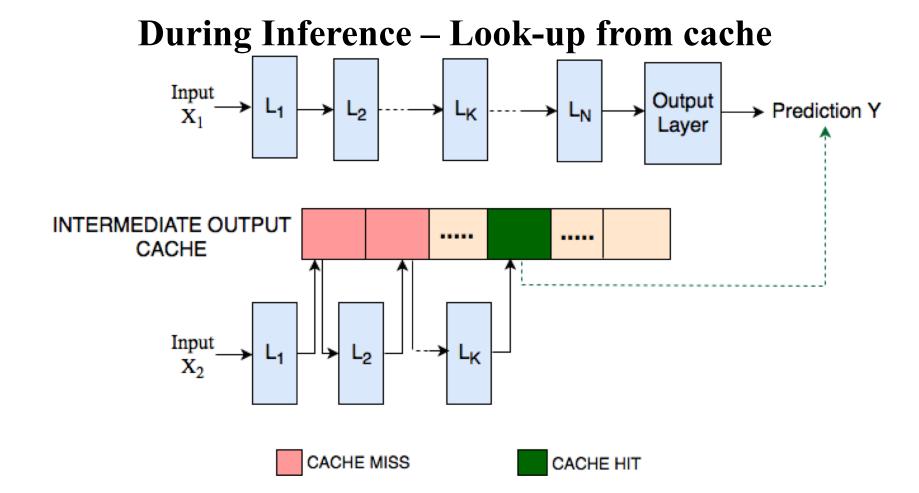
**During Inference** – Look-up from cache



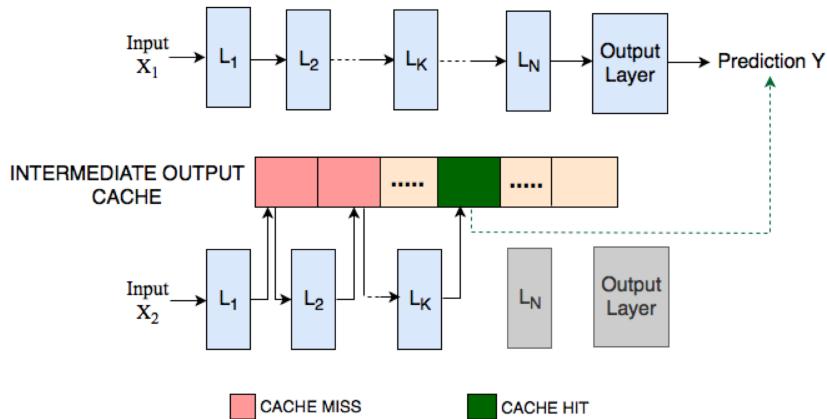
**During Inference – Look-up from cache** 







**During Inference – Look-up from cache** 



**Challenge #1: Exact cache hit is unlikely** 

**Challenge #2: Curse of dimensionality** 

**Challenge #3: Memory and computational overheads** 

**Challenge #1: Exact cache hit is unlikely** 

**Challenge #2: Curse of dimensionality** 

**Challenge #3: Memory and computational overheads** 

#### **Challenge #1: Exact cache hit is unlikely**

Why?

- High dimensions
- Floating point precision

#### **Challenge #1: Exact cache hit is unlikely**

Why?

- High Dimensions
- Floating point precision

#### Approach?

- Points close by in feature space have high probability of having same prediction

#### **Challenge #1: Exact cache hit is unlikely**

#### **Towards Approximate Caching**

Instead of exact matches, find "k" nearest points in the cache

Prediction is the majority label among the "k" nearest neighbors

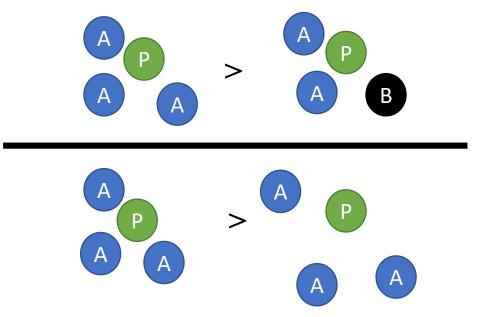


#### **Challenge #1: Exact cache hit is unlikely**

Need "confidence" to infer the quality of a prediction

Prediction can be more "confident" if:

(i) More neighbors agree on the same label(ii) Neighbors are closer to the input point



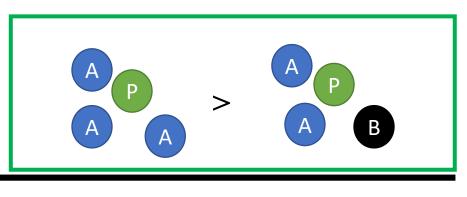
#### **Challenge #1: Exact cache hit is unlikely**

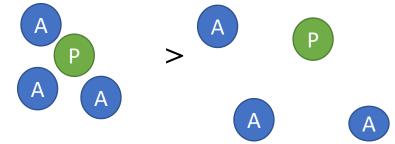
Need "confidence" to infer the quality of a prediction

Prediction can be more "confident" if:

(i) More neighbors agree on the same label

(ii) Neighbors are closer to the input point





#### **Challenge #1: Exact cache hit is unlikely**

Need "confidence" to infer the quality of a prediction

Prediction can be more "confident" if:

(i) More neighbors agree on the same label(ii) Neighbors are closer to the input point

Confidence - Heuristic based on the above

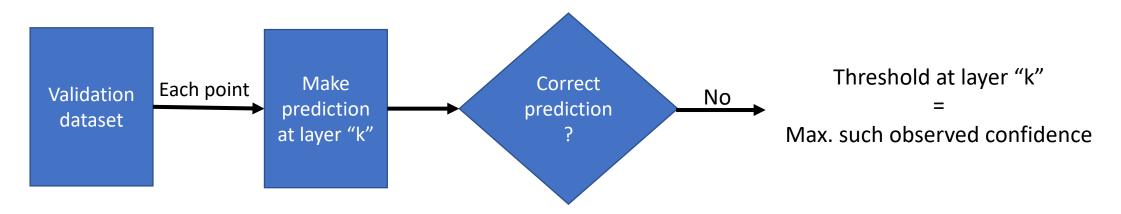


**Challenge #1: Exact cache hit is unlikely** 

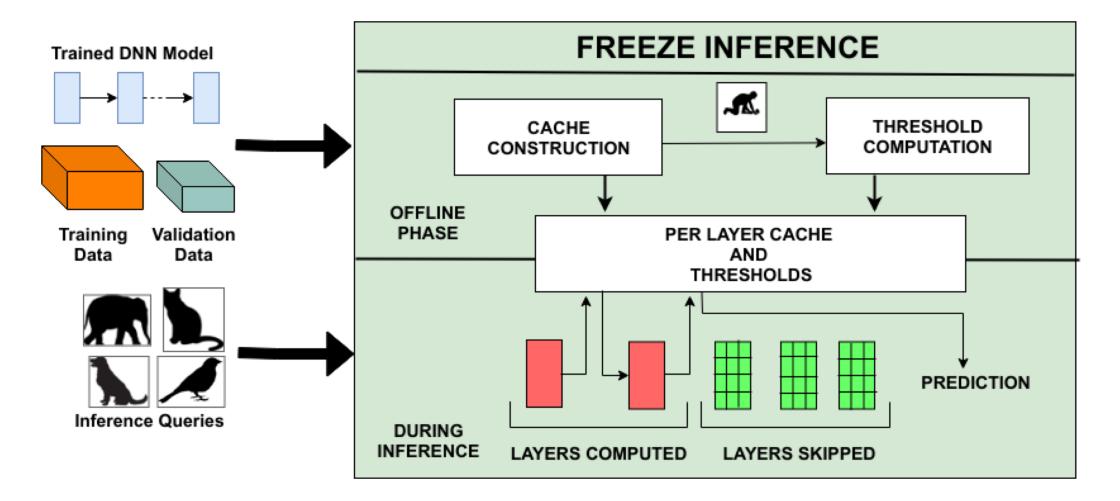
#### **Towards Approximate Caching**

How much confidence is good enough?

- Need to establish a "threshold" per layer.



## Freeze Inference - System Design



### **Freeze Inference - Results**

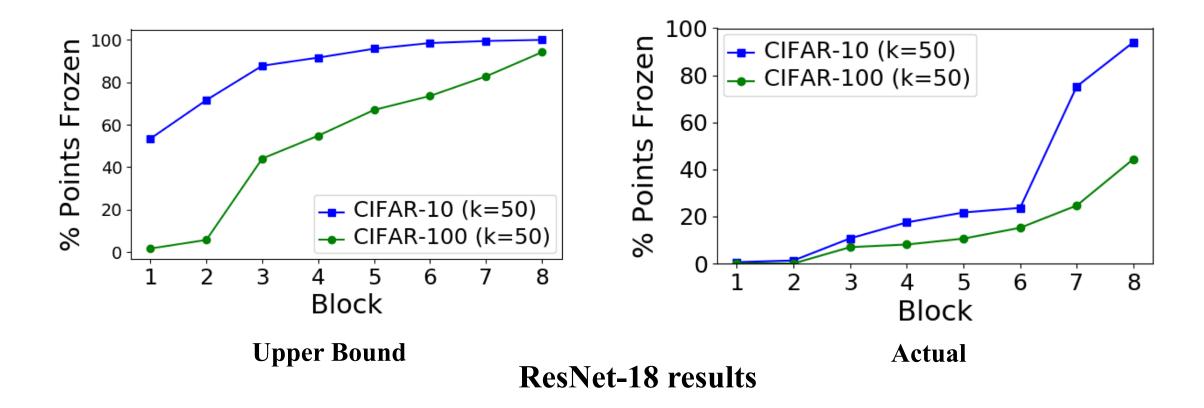
Evaluation against -

- Datasets: CIFAR-10 and CIFAR-100
- Models: ResNet-18 and ResNet-50

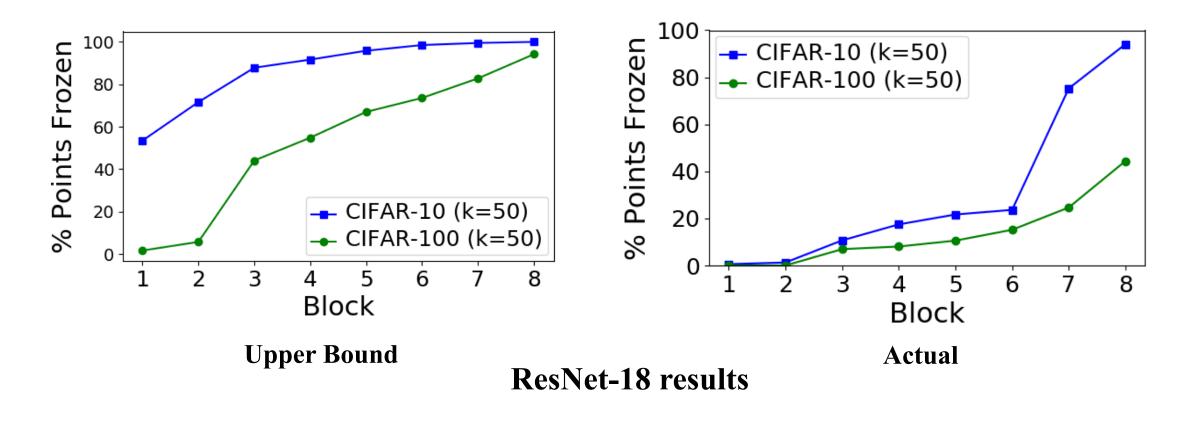
For each test,

- Use 35,000 points for cache construction
- Use 5,000 points for threshold computation
- Apply Freeze Inference for 10,000 requests

#### **Freeze Inference – Results**



#### **Freeze Inference – Results**

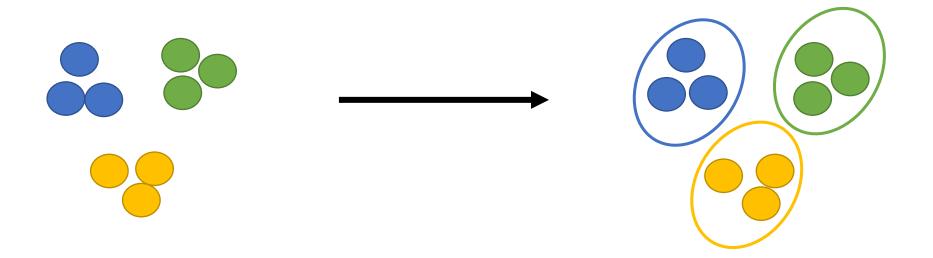


Block 5 – k-NN: ~25% Upper bound: ~90% Bridging this gap is an interesting research problem

### **Freeze Inference – Discussion**

#### **Discussion Point #1 – Managing memory requirement**

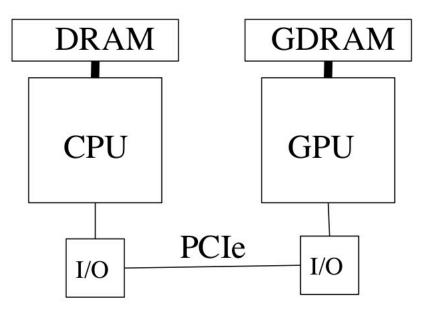
- Storing each point incurs memory overheads
- Can use k-means to reduce memory overheads
- Given a fixed cache budget M, choose points to constitute cache



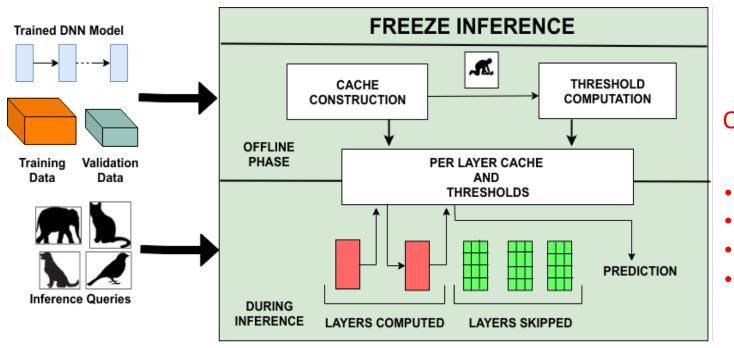
### **Freeze Inference – Discussion**

#### **Discussion Point #2 – Cache placement**

- To be placed closed to region of compute for low latency
- Cache placement on GPUs



## Conclusion



Can use caching of intermediate layer outputs to reduce inference latency

#### Open research challenges to fully realize the potential

- Adaptation to custom hardware like GPUs
- Computational and memory overheads
- Online cache construction mechanism
- Better cache look-up schemes

# **Backup Slides**

#### **Challenge #2: Curse of Dimensionality**

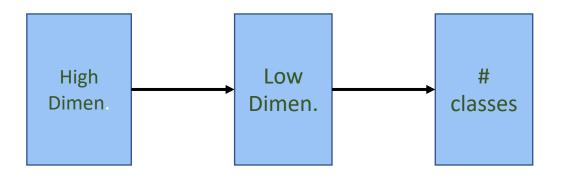
- Distance based similarity measures do not work well in high dimension
- Impact: Cache look-up will not be accurate

#### **Challenge #2: Curse of Dimensionality**

- Distance based similarity measures do not work well in high dimension
- Impact: Cache look-up will not be accurate

#### Solution?

- Inspired by metric learning, use a one layer neural network for supervised dimensionality reduction



**Challenge #3: Memory and Computational Overheads** 

k-nearest neighbors necessitates -

- Compute: Distance to be computed against each point in cache
- Memory: To hold the cache

#### **Challenge #3: Memory and Computational Overheads**

k-nearest neighbors necessitates -

- Compute: Distance to be computed against each point in cache
- Memory: To hold the cache

#### Solution?

Can use k-means to cluster points in cache

Store only cluster centers and associated labels in cache

### **Freeze Inference - Results**

Memory overheads depend on –

- (i) # layers in model
- (ii) Lower dimension size (d)
- (iii) Value of "k" in k-NN

| Model     | Memory (d=1024 and k=100) |
|-----------|---------------------------|
| ResNet-18 | 12.5 MB                   |
| ResNet-50 | 25 MB                     |

### **Freeze Inference – Discussion**

#### **Discussion Point #3 – Online Cache Updates**

- Incorporating inference points into cache
- Handling frequent inference queries