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Deep Learning — State of affairs
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Top Competitors - ImageNet Large Scale Visual Recognition Challenge
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Top Competitors - ImageNet Large Scale Visual Recognition Challenge

Over the years
- Top 5 error rate decreasing
- Models becoming deeper

Suits goals for ML training
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Top Competitors - ImageNet Large Scale Visual Recognition Challenge

Over the years
- Top 5 error rate decreasing
- Models becoming deeper

Suits goals for ML training

Not aligned with goals for ML inference



Deep Learning - Background
B i g
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Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Neural Network - Sequence of layers with each layer dependent on previous layers



Deep Learning — State of affairs

200 Not aligned with goals for ML inference
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Top Competitors - ImageNet Large Scale Visual Recognition Challenge

Image source: Google Images



Deep Learning — Reducing Latency

Prior Solutions

Model Quantization: Changes precision of computation; Hurts accuracy

Model Distillation: Smaller model is trained to mimic larger/ensemble model; Hurts accuracy

Ensemble Methods: Run multiple models, choose best; Resources wasted

Anytime Predictions: Auxiliary Predictions; Trade-off b/w accuracy and latency
Custom Hardware: TPUs, FPGAs; Hardware dependent



Freeze Inference

Provides low-latency inference by caching intermediate layer outputs

Goals

* No trade-off on accuracy
* Resource efficient

* Hardware agnostic



Freeze Inference — Key Insight

Background Edge
Subtraction Detection

Input Layer

Output Layer
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. Input to layer is not same for both images Input to layer is same for both images




Freeze Inference — Basic Mechanism

Prior to Inference - Cache intermediate layer outputs
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Freeze Inference — Basic Mechanism

During Inference — Look-up from cache
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Freeze Inference — Basic Mechanism

During Inference — Look-up from cache

Input
Xl —» L1
INTERMEDIATE OUTPUT
CACHE
Input
X, L

>l Lp [ Ly -

—>

—»

Output
Layer

— Prediction Y

II51

CACHE MISS

I cAcHE HiT

12



Freeze Inference — Basic Mechanism

During Inference — Look-up from cache
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Freeze Inference — Basic Mechanism

During Inference — Look-up from cache
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Freeze Inference — Basic Mechanism

During Inference — Look-up from cache
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Freeze Inference - Challenges

Challenge #1: Exact cache hit is unlikely
Challenge #2: Curse of dimensionality

Challenge #3: Memory and computational overheads
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Freeze Inference - Challenges

‘ Challenge #1: Exact cache hit is unlikely ‘

Challenge #2: Curse of dimensionality

Challenge #3: Memory and computational overheads
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Freeze Inference - Challenges

Challenge #1: Exact cache hit is unlikely
Why?
- High dimensions

- Floating point precision
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Freeze Inference - Challenges

Challenge #1: Exact cache hit is unlikely
Why?
- High Dimensions

- Floating point precision

Approach?

- Points close by 1n feature space have high probability of having same prediction
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Freeze Inference - Challenges

Challenge #1: Exact cache hit is unlikely

Towards Approximate Caching

Instead of exact matches, find “k”™ nearest points in the cache

Prediction is the majority label among the “k’ nearest neighbors

° 0 ° ° Point under consideration
° Prediction is °

20



Freeze Inference - Challenges

Challenge #1: Exact cache hit is unlikely

Need “confidence” to infer the quality of a prediction

Prediction can be more “confident” if:
(1) More neighbors agree on the same label

(11) Neighbors are closer to the input point
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Freeze Inference - Challenges

Challenge #1: Exact cache hit is unlikely

Need ”confidence” to infer the quality of a prediction

Prediction can be more “confident” if:

(1) More neighbors agree on the same label

(ii)‘ Neighbors are closer to the input point

Confidence - Heuristic based on the above
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Freeze Inference - Challenges
Challenge #1: Exact cache hit is unlikely

Towards Approximate Caching
How much confidence 1s good enough?

- Need to establish a “threshold” per layer.

\alidation LEldalelellyl: Make Correct Threshold at layer “k”

dataset

prediction prediction
at layer “k” ? Max. such observed confidence
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Freeze Inference - System Design
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Freeze Inference - Results

Evaluation against -
- Datasets: CIFAR-10 and CIFAR-100
- Models: ResNet-18 and ResNet-50

For each test,

- Use 35,000 points for cache construction

- Use 5,000 points for threshold computation
- Apply Freeze Inference for 10,000 requests



Freeze Inference — Results
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Freeze Inference — Results
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ResNet-18 results

Block 5 — Kk-NN:~25% Upper bound: ~90%

Bridging this gap is an interesting research problem



Freeze Inference — Discussion

Discussion Point #1 — Managing memory requirement

- Storing each point incurs memory overheads

- Can use k-means to reduce memory overheads

- Given a fixed cache budget M, choose points to constitute cache
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Freeze Inference — Discussion

Discussion Point #2 — Cache placement
- To be placed closed to region of compute for low latency

- Cache placement on GPUs
DRAM GDRAM
I I
CPU GPU

I/O Lele I/O




Conclusion
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Can use caching of intermediate layer
outputs to reduce inference latency

Open research challenges to fully realize
the potential

e Adaptation to custom hardware like GPUs
* Computational and memory overheads

* Online cache construction mechanism

e Better cache look-up schemes
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Freeze Inference - Challenges

Challenge #2: Curse of Dimensionality

- Distance based similarity measures do not work well 1n high dimension

- Impact: Cache look-up will not be accurate
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Freeze Inference - Challenges

Challenge #2: Curse of Dimensionality

- Distance based similarity measures do not work well 1n high dimension

- Impact: Cache look-up will not be accurate

Solution?

- Inspired by metric learning, use a one layer neural network for supervised
dimensionality reduction

High | Low - H
Dimen Dimen. classes




Freeze Inference - Challenges

Challenge #3: Memory and Computational Overheads
k-nearest neighbors necessitates -
- Compute: Distance to be computed against each point in cache

- Memory: To hold the cache
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Freeze Inference - Challenges

Challenge #3: Memory and Computational Overheads
k-nearest neighbors necessitates -
- Compute: Distance to be computed against each point in cache

- Memory: To hold the cache

Solution?
Can use k-means to cluster points in cache

Store only cluster centers and associated labels in cache
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Freeze Inference - Results

Memory overheads depend on —
(1) # layers in model

(i1)) Lower dimension size (d)
(i11) Value of “k” in k-NN

ResNet-18 12.5 MB
ResNet-50 25 MB



Freeze Inference — Discussion

Discussion Point #3 — Online Cache Updates
- Incorporating inference points into cache
- Handling frequent inference queries
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