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(Edge-to-cloud) vision analytics are ubiquitous

• Large scale deployment of cameras: traffic monitoring, event detection 

• Vehicles/robots with cameras: autonomous driving vehicles/robotics/drones

Object detection Semantic segmentation
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Advanced applications are demanding

• Example: segmentation and object detection tasks for autonomous driving 

• Real-time-level interaction requires low latency  

• High inference accuracy requires high fidelity data and computing resource 

• Currently advanced applications run heavy vision inference tasks on the edge. 

“Real-time video analytics: the killer app for edge computing” 
–Ganesh Ananthanarayanan etc. 

• But it makes sense to consider a cloud-based solution. 
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Potential benefits of the cloud 

• Reducing the requirements for edge devices, thus making the large-scale 
deployment cheap.  

• High-end autonomous driving vehicles vs. delivery robots/vehicles
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Challenges

The edge-to-cloud real-time advanced vision applications face strict 
bandwidth-accuracy trade-off:  

1. Accuracy: demanding applications → high accuracy → high quality data 

2. Bandwidth: high quality camera feeds → high network bandwidth usage
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Idea #1: cropping
Sending only cropped areas of region-of-interest (ROI). (Reinventing Video 
Streaming for Distributed Vision Analytics, Pakha et al., HotCloud 2018).
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Limitation: For advanced applications, ROI is is the full frame. → Cannot crop.



Idea #2: frame filtering
Filtering the relevant frames and streaming them to the cloud. (Scaling Video 
Analytics On Constrained Edge Nodes, Canel et al., SysML 2019) 

Limitation: Works well for always-on stationary traffic camera feeds, but not 
for a moving vehicle/robot: relevant objects are always in the scene. 

!7



Idea #3: harmless degradation
Using a task-specific degradation config. (AWStream: Adaptive Wide-Area 
Streaming Analytics, Zhang et al., SIGCOMM 2018) 

Mobile cameras: value frame rate. Stationary cameras: value resolution 

Limitation: Advanced applications require both high frame rate and resolution.
4× downsampling→13% loss on mIoU, 20% on small yet critical object classes
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Our work

• CloudSeg, an edge-to-cloud framework for advanced vision analytics that 
achieves both low latency and high inference accuracy with analytics-aware 
super-resolution. 

• CloudSeg saves bandwidth by recovering the high-resolution frames from the 
low-resolution stream via super-resolution. 

• CloudSeg keeps high accuracy via SR tailored for the actual analytics tasks.
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Design of CloudSeg framework

Low extra latency (6.2ms) with an efficient SR model on the GPU server.
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Bandwidth usage saving

With CloudSeg, downsampling 2K frames to 512×256 can reduce 13.3× 
bandwidth usage with 2.6% accuracy (mIoU) loss for semantic segmentation.  
To achieve the same accuracy, AWStream needs to stream 720p feed, thus 
CloudSeg can reduce bandwidth use by 6.8× compared with AWStream.

!11



Inference accuracy on critical details

• Some classes in Cityscapes dataset are very insensitive to input resolutions: 
sky, road, wall, building, etc. 

• Others e.g. rider, bicycle, motorcycle, traffic sign/light, person are sensitive to 
the input quality and also critical to the real-world applications.  

• Observation: There is a mismatch between goals of SR and analytics tasks.
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Analytics-aware super-resolution 

• Target of SR training: 
reduce the backend model 
inference accuracy loss 

• Especially improve the 
accuracy on small objects, 
compared with vanilla SR 

• 2.6% accuracy loss 
compared with HR frames
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Promising results

• 6.8× bandwidth saving compared with AWStream, at same inference accuracy  
2.6% accuracy (mIoU) loss compared with original 2K frames (13.3× larger)
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Summary

• Enabling edge-to-cloud real-time advanced vision analytics is meaningful.  
The key technical challenge is the strict bandwidth-accuracy trade-off. 

• The design of CloudSeg is a first step to tackle the trade-off with analytics-
aware super-resolution. 

• Promising results: 6.8× bandwidth saving compared with directly 
downsampling, with negligible drop in accuracy compared with original video.
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