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(Edge-to-cloud) vision analytics are ubiquitous

e Large scale deployment of cameras: traffic monitoring, event detection

e Vehicles/robots with cameras: autonomous driving vehicles/robotics/drones
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Advanced applications are demanding

e Example: segmentation and object detection tasks for autonomous driving
e Real-time-level interaction requires low latency

e High inference accuracy requires high fidelity data and computing resource
o Currently advanced applications run heavy vision inference tasks on the edge.

“Real-time video analytics: the killer app for edge computing”
-Ganesh Ananthanarayanan etc.

e But it makes sense to consider a cloud-based solution.



Potential benefits of the cloud

e Reducing the requirements for edge devices, thus making the large-scale
deployment cheap.

e High-end autonomous driving vehicles vs. delivery robots/vehicles




Challenges

The edge-to-cloud real-time advanced vision applications face strict
bandwidth-accuracy trade-off:

1. Accuracy: demanding applications = high accuracy = high quality data

2. Bandwidth: high quality camera feeds = high network bandwidth usage



ldea #1: cropping

Sending only cropped areas of region-of-interest (ROI). (Reinventing Video
Streaming for Distributed V|5|on Analytlcs Pakha et al., HotCloud 2018).

Limitation: For advanced applications, ROl is is the full frame. - Cannot crop.
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ldea #2: frame filtering

Filtering the relevant frames and streaming them to the cloud. (Scaling Video
Analytics On Constrained Edge Nodes, Canel et al., SysML 2019)

Limitation: Works well for always-on stationary traffic camera feeds, but not
for a moving vehicle/robot: relevant objects are always in the scene.

- - ——

Al

W

.

Blackfoot Tr & 17a/19 St SE N Jul 01 02:29



ldea #3: harmless degradation

Using a task-specific degradation config. (AWStream: Adaptive Wide-Area
Streaming Analytics, Zhang et al., SIGCOMM 2018)
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Mobile cameras: value frame rate. Stationary cameras: value resolution

Limitation: Advanced applications require both high frame rate and resolution.
4x downsampling—13% loss on mloU, 20% on small yet critical object classes



Our work

e CloudSeg, an edge-to-cloud framework for advanced vision analytics that
achieves both low latency and high inference accuracy with analytics-aware
super-resolution.

e CloudSeg saves bandwidth by recovering the high-resolution frames from the
low-resolution stream via super-resolution.

e CloudSeg keeps high accuracy via SR tailored for the actual analytics tasks.



Design of CloudSeg framework
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Low extra latency (6.2ms) with an efficient SR model on the GPU server.

10



Bandwidth usage saving
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With CloudSeg, downsampling 2K frames to 512x256 can reduce 13.3%
bandwidth usage with 2.6% accuracy (mloU) loss for semantic segmentation.
To achieve the same accuracy, AWStream needs to stream 720p feed, thus
CloudSeg can reduce bandwidth use by 6.8% compared with AWStream.
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Inference accuracy on critical details

e Some classes in Cityscapes dataset are very insensitive to input resolutions:
sky, road, wall, building, etc.

e Others e.g. rider, bicycle, motorcycle, traffic sign/light, person are sensitive to
the input quality and also critical to the real-world applications.
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e Observation: There is a mismatch between goals of SR and analytics tasks.
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Analytics-aware super-resolution

e Target of SR training:
reduce the backend model
inference accuracy loss

e Especially improve the
accuracy on small objects,
compared with vanilla SR

e 2.6% accuracy loss
compared with HR frames

SR
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Promising results

e 6.8% bandwidth saving compared with AWStream, at same inference accuracy
2.6% accuracy (mloU) loss compared with original 2K frames (13.3x larger)
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Summary

e Enabling edge-to-cloud real-time advanced vision analytics is meaningful.
The key technical challenge is the strict bandwidth-accuracy trade-off.

e The design of CloudSeg is a first step to tackle the trade-off with analytics-
aware super-resolution.

e Promising results: 6.8x bandwidth saving compared with directly
downsampling, with negligible drop in accuracy compared with original video.
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