Steel: Simplified Development and Deployment of Edge-Cloud Applications

Shadi A. Noghabi ^{1,3}, John Kolb ², Peter Bodik ³, Eduardo Cuervo ³

- 1. University of Illinois at Urbana-Champaign
- 2. University California, Berkeley
- 3. Microsoft Research

Cloud Services Have Grown

\$383 Billion market by 2020 (20% annual growth)¹

-- increase in the **number** and **variety** of services

Many complex multi-service applications have emerged

1. https://www.gartner.com/newsroom/id/3815165

Growing Interest in the "Edge"

Growing Interest in the "Edge"

Why use the Edge?

- Latency: Edge is close by
- Cost: Reduced cost
 - network to cloud
 - services in cloud
- Availability: Continuous service despite disconnects

Industry at Infancy of Edge-Cloud

Emerging Edge-Cloud environments

What is the Gap?

Many optional (in cloud-only) **optimizations** are **crucial** in the edge-cloud

- More heterogeneity, more failures, limited resources.
- Placement, communication, load-balancing, etc.

→ Essential to readily move services & dynamically adapt

However...

- Configuring services is cumbersome and error-prone.
- Wide diversity & compatibility constraints in services.
- Optimizations are manual and non-reusable.

Integrated with *production* Azure services

Steel: A simplified & unified edge cloud framework with *modular* and automated optimizations

Abstraction & Fabric

Abstraction:

- **1. Logical DAG** of the application
 - Main services & their connections
- 2. Location of each service

...

Fabric: physically materializing & connecting services

Optimization Modules

Placement

Where (edge/cloud) to place? From the large search space

Communication

configure edge-cloud links

Adapt to **short-term** spikes

Load Balancing

Where to move?

Adapt to long-term changes

...

Optimizer Modules

Placement

Where (edge/cloud) to place? From the large search space

Load Balancing

Where to move?

Adapt to long-term changes

Communication

configure edge-cloud links

Adapt to **short-term** spikes

Added to Steel with ~500 lines of C# code

Evaluation

Experimental Setup

Compare many diverse real world applications:

- 1. Data persisting
- 2. Predictive maintenance
- 3. BLE sensor analyzer
- 4. Factory monitoring
- 5. Statistic generator
- 6. Anomaly detector

Initial Development Effort

Modification Effort

Conclusion

Steel: A **unified** edge cloud framework with modular and automated optimizations

- Simple Deployment
- Easy Move & Adapt
- **Optimizations**

Back up slides

Cloud is Not an One-Size-Fits-All

The Cloud is simply **too far**! > 70 *ms* round trip time

Cloud is Not an One-Size-Fits-All

Cloud is Not an One-Size-Fits-All

21