To Relay or Not to Relay for Inter-Cloud Transfers?

Fan Lai, Mosharaf Chowdhury, Harsha Madhyastha
Background

- Over 40 Data Centers (DCs) on EC2, Azure, Google Cloud
 - A geographically denser set of DCs across clouds

- Cloud apps host on multiple DCs
 - Web search, Interactive Multimedia
 - Low latency access, privacy regulations

- Massive data across geo-distributed DCs
WAN is **Crucial** for Geo-distributed Service

- **Bandwidth-intensive transfers**
 - Geo-distributed replication: Web search, cloud storage
 - Inter-DC Routing: SWAN[\textit{SIGCOMM'13}], Pretium[\textit{SIGCOMM'16}], etc
- **Big data analytics**: Iridium [\textit{SIGCOMM'15}], Clarinet [\textit{OSDI'16}] …
 - …
- **Latency-sensitive traffic**
 - Interactive service: Skype, Hangout
 - Transaction processing: SPANStore[\textit{SOSP'13}], Carousel[\textit{SIGMOD'18}], etc
 - …
• WAN bandwidth(b/w) varies significantly between different regions
 • Close regions have more than $12 \times$ of the b/w than distant regions[1]

Bandwidth Measurement across 11 EC2 regions[1]

• Reproduce prior measurements
 • 11 EC2 regions, 110 inter-DC pairs
 • Tools: *iperf* (TCP)
• Heterogeneous link capacity
 • Varies between the same type of VMs
 • Lower b/w between distant regions
• Relay should work pretty well
About 40% percent data transfers between EC2 regions can have more than 1.5x bandwidth increase via relay.
How to identify and tackle this complicated WAN?
- Heterogeneous across regions
- Dynamic runtime environment
- Great complexity in sys design
How to identify and tackle this complicated WAN?
- Heterogeneous across regions
- Dynamic runtime environment
- Great complexity in sys design

Assumptions in prior measurements:
- Default TCP setting works well
- Single TCP is representative enough for the available b/w
What if we Break Down these assumptions?
- Default TCP setting works well
- Single TCP is representative enough for the available b/w

#1: Whether the b/w still varies spatially?

#2: Whether the b/w still varies temporally?

#3: How much room for WAN improvement via relay?
Default TCP Setting may be Sub-optimal

- B/w varies across regions
 - Lower b/w between distant regions
 - RTT varies across regions

- Max TCP window is bounded
 - TCP throughput is RTT-based

Google: Bandwidth to Iowa
Default TCP Setting is **Sub-optimal**

- **B/w varies across regions**
 - Lower b/w between distant regions
 - RTT varies across regions

- **Max TCP window is bounded**
 - TCP throughput is RTT-based

- **Per-TCP rate limit on the WAN**

![Bandwidth to Iowa](chart.png)
Single TCP is not Representative

- Single TCP underutilize the b/w
 - Use multiple TCPs

- Per-VM cap for outbound rate
 - Per-TCP rate limit < Per-VM cap

- Aggregate b/w is homogeneous
 - VM-cap works on all connections

Google: Bandwidth to Iowa
What if we Break Down these assumptions?

- Default TCP setting works well
- Single TCP is representative enough for the available b/w

#1: Whether the b/w still varies spatially? Often Homogeneous

#2: Whether the b/w still varies temporally?

#3: How much room for WAN improvement via relay?
Available B/w is often Stable

- Measurement setup
 - Create/terminate connections

- Inter-DC connections share the VM-cap

![Graph showing throughput over time for different locations](image-url)

Google: Throughput from Iowa
Available B/w is often **Stable**

- Measurement setup
 - Create/terminate connections
- Inter-DC connections share the VM-cap

Google: Throughput from Iowa
Available B/w is often **Stable**

- **Measurement setup**
 - Create/terminate connections

- **Inter-DC connections share the VM-cap**

- **Max b/w (VM cap) is stable**

Google: Throughput from Iowa
Maximum available **bandwidth**
- **Homogeneous across regions**
- **Stable over time**
- **Varies with VM instances**
- **Performance can be predictable w/o great sys complexity**

What will happen if the b/w is homogeneous?
Little Scope for Optimization via Inter-DC Relay

What will happen if the b/w is homogeneous?

Homogeneous bandwidth

Latency Measurement across 40 DCs

What will happen if the b/w is homogeneous?
• **Intra-DC** relay from poor performance VMs to high performance VMs
 - Gain more inter-DC bandwidth without extra costs for transfers
 - Routing through a third DC takes your money away

Takeaway
Takeaway

• Turn to the optimization of bandwidth contentions inside VMs
 • VM-cap VS link-level optimizations used in existing GDA work
 • VM-aware VS WAN-aware

• Bandwidth measurements are far from complete
 • More than 40 VM instance types
Thank you!

Questions?

fanlai@umich.edu

#1: Whether the b/w still varies spatially? Often Homogeneous

#2: Whether the b/w still varies temporally? Often Stable

#3: How much room for WAN improvement via relay? Case by case