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Motivation 

  System operations (such as upgrade, deployment and 
backup) in cloud are performed through cloud APIs 
provided by cloud providers 
 The completion time and reliability of operation tasks 

depends on the reliability and performance of API calls 
  We observed cloud API issues during the development 

of our commercial product Yuruware Bolt 
 Yuruware Bolt relies EC2 to perform disaster recovery 

operations 
 e.g., when we detach/attach a volume, it is stuck at 

detaching/attaching 
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Motivation 
  We performed searches on EC2 forum 

 5 API calls: launch instance, start instance, stop instance, 
attach volume, detach volume  

 extracted API related issues: 922 cases out of 1109 API 
related cases are API failures 

 81% of 922 failures are timing failures (stuck API calls and 
slow responded API calls) 
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Motivation 

Measurement results of  EC2 “launch instance”  

  We conducted experiments on the timing behaviour of 
5 EC2 API calls and observed that around 4.5% have 
long tail characteristics 
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Motivation 

 Cloud API timing failures：major causes 
of the long-tail of operation tasks  
 Existing research focuses on reducing 

errors and repair time 
 One step of an operation: parallel or 

deep hierarchical  
 One slow API response will cause the initial 

operation to be slow to respond 



7 

Tail-Tolerant Mechanisms 
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Tail-Tolerant Mechanisms 

Issue more request than we 
need and then cancel the 
remaining immediately after 
the required number is reached 
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Tail-Tolerant Mechanisms 

An alternative API is requested 
at the same time as the original 
API is requested 
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Tail-Tolerant Mechanisms 

If the API request sent to an 
instance is failed or there is no 
response from the cloud 
infrastructure 
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Tail-Tolerant Mechanisms 

When an API call has 
been retried for several 
times and continue to fail 
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API Wrapper 
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Evaluation of API Wrapper 

Measurement results of “start instance”.  Measurement results of “stop instance”.  

  Evaluate API wrapper on EC2 
  For each API we wrapped, we measure the return time 

1000 times respectively 
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Deployment Architecture Tactics 
  Immutable server 

 Operators make an image which contains a new version of 
everything an application needs. After the image is 
launched, nothing more is added or allowed to be changed.  

  Micro service  
 Operators break down an application into micro-services 

and make each service run on different VMs. 
 Lightweight instances and less performance interference  

  Redundancy:  
 Operator can run more than the required number of VMs to 

avoid long-tail operations.   
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Evaluation of Deployment Architecture Tactics 

  We evaluate the deployment architecture tactics 
through automatically upgrading 50 AMP stacks  
(Apache + MySQL + PHP) by shell scripts.   
 ran on EC2  
 upgrades the AMP stack from Apache 2.0.65, MySQL 

5.1.73, and PHP 5.2.17 to Apache 2.2.22, MySQL 
5.5.35, and PHP 5.3.10 respectively. 
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Evaluation of Deployment Architecture Tactics 

  We implemented the three deployment tactics, and compared 
the number of the successfully upgraded VMs using different 
tactics with a baseline, which represents upgrade without any 
tactics. 

  Ran each of the 4 test cases 100 times  
  Baseline: upgrade AMP running on 50 VMs to the recent versions directly 

on the original VMs. 
  Immutable server: create an image of VM which runs the new version of 

AMP and launch 50 VMs using the image. Then we terminate the VMs 
running old versions of AMP. 

  Micro services: run Apache and PHP on 50 VMs and run MySQL on 
another 50 VMs, then we upgrade them on the original VMs directly. 

  Redundancy: launch 3 extra VMs with AMPs before we do upgrade. 
After the 3 extra VMs are successfully launched, we start upgrading the 
53 VMs with AMPs. 
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Evaluation of Deployment Architecture Tactics 

Measurement results of deployment tactics.  
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Conclusions 
  We proposed API mechanisms and deployment 

architecture tactics to tolerate long-tail issues of 
operations in cloud  

  We implemented our mechanisms as a tail-tolerant 
wrapper around EC2 APIs 

  Our initial evaluation shows that the mechanisms and 
deployment architecture tactics can remove the long tails 

  Future work:  
  implement the rest of mechanisms in API wrapper  
 model the reliability of cloud operations in SRN    
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