
Qinghua Lu, Liming Zhu, Xiwei Xu, Len Bass,

Shanshan Li, Weishan Zhang, Ning Wang

China University of Petroleum, Qingdao, China

NICTA, Sydney, Australia

dr.qinghua.lu@gmail.com

Mechanisms and Architectures
for Tail-Tolerant System Operations

in Cloud	
�

Outline
2

  Motivation
  Tail-Tolerant Mechanisms and API Wrapper
  Deployment Architecture Tactics
  Evaluation
  Conclusion

3

Motivation

  System operations (such as upgrade, deployment and
backup) in cloud are performed through cloud APIs
provided by cloud providers
 The completion time and reliability of operation tasks

depends on the reliability and performance of API calls
  We observed cloud API issues during the development

of our commercial product Yuruware Bolt
 Yuruware Bolt relies EC2 to perform disaster recovery

operations
 e.g., when we detach/attach a volume, it is stuck at

detaching/attaching

4

Motivation
  We performed searches on EC2 forum

 5 API calls: launch instance, start instance, stop instance,
attach volume, detach volume

 extracted API related issues: 922 cases out of 1109 API
related cases are API failures

 81% of 922 failures are timing failures (stuck API calls and
slow responded API calls)

5

Motivation

Measurement results of EC2 “launch instance”

  We conducted experiments on the timing behaviour of
5 EC2 API calls and observed that around 4.5% have
long tail characteristics

6

Motivation

 Cloud API timing failures：major causes
of the long-tail of operation tasks
 Existing research focuses on reducing

errors and repair time
 One step of an operation: parallel or

deep hierarchical
 One slow API response will cause the initial

operation to be slow to respond

7

Tail-Tolerant Mechanisms

8

Tail-Tolerant Mechanisms

Issue more request than we
need and then cancel the
remaining immediately after
the required number is reached

9

Tail-Tolerant Mechanisms

An alternative API is requested
at the same time as the original
API is requested

10

Tail-Tolerant Mechanisms

If the API request sent to an
instance is failed or there is no
response from the cloud
infrastructure

11

Tail-Tolerant Mechanisms

When an API call has
been retried for several
times and continue to fail

12

API Wrapper

13

Evaluation of API Wrapper

Measurement results of “start instance”. Measurement results of “stop instance”.

  Evaluate API wrapper on EC2
  For each API we wrapped, we measure the return time

1000 times respectively

14

Deployment Architecture Tactics
  Immutable server

 Operators make an image which contains a new version of
everything an application needs. After the image is
launched, nothing more is added or allowed to be changed.

  Micro service
 Operators break down an application into micro-services

and make each service run on different VMs.
 Lightweight instances and less performance interference

  Redundancy:
 Operator can run more than the required number of VMs to

avoid long-tail operations.

15

Evaluation of Deployment Architecture Tactics

  We evaluate the deployment architecture tactics
through automatically upgrading 50 AMP stacks
(Apache + MySQL + PHP) by shell scripts.
 ran on EC2
 upgrades the AMP stack from Apache 2.0.65, MySQL

5.1.73, and PHP 5.2.17 to Apache 2.2.22, MySQL
5.5.35, and PHP 5.3.10 respectively.

16

Evaluation of Deployment Architecture Tactics

  We implemented the three deployment tactics, and compared
the number of the successfully upgraded VMs using different
tactics with a baseline, which represents upgrade without any
tactics.

  Ran each of the 4 test cases 100 times
  Baseline: upgrade AMP running on 50 VMs to the recent versions directly

on the original VMs.
  Immutable server: create an image of VM which runs the new version of

AMP and launch 50 VMs using the image. Then we terminate the VMs
running old versions of AMP.

  Micro services: run Apache and PHP on 50 VMs and run MySQL on
another 50 VMs, then we upgrade them on the original VMs directly.

  Redundancy: launch 3 extra VMs with AMPs before we do upgrade.
After the 3 extra VMs are successfully launched, we start upgrading the
53 VMs with AMPs.

17

Evaluation of Deployment Architecture Tactics

Measurement results of deployment tactics.

18

Conclusions
  We proposed API mechanisms and deployment

architecture tactics to tolerate long-tail issues of
operations in cloud

  We implemented our mechanisms as a tail-tolerant
wrapper around EC2 APIs

  Our initial evaluation shows that the mechanisms and
deployment architecture tactics can remove the long tails

  Future work:
  implement the rest of mechanisms in API wrapper
 model the reliability of cloud operations in SRN

Thanks you!	
�

