Mechanisms and Architectures

for Tail-Tolerant System Operations
in Cloud

Qinghua Lu, Liming Zhu, Xiwei Xu, Len Bass,
Shanshan Li, Weishan Zhang, Ning Wang

China University of Petroleum, Qingdao, China
NICTA, Sydney, Australia
dr.ginghua.lu@gmail.com

Outline

Motivation
Tail-Tolerant Mechanisms and APl Wrapper

Deployment Architecture Tactics

Evaluation

Conclusion

Motivation

3

System operations (such as upgrade, deployment and
backup) in cloud are performed through cloud APIs
provided by cloud providers

The completion time and reliability of operation tasks
depends on the reliability and performance of API calls

We observed cloud API issues during the development
of our commercial product Yuruware Bolt

Yuruware Bolt relies EC2 to perform disaster recovery
operations

e.g., when we detach/attach a volume, it is stuck at
detaching /attaching

Motivation

4

We performed searches on EC2 forum

5 API calls: launch instance, start instance, stop instance,
attach volume, detach volume

extracted APl related issues: 922 cases out of 1109 API
related cases are API failures

81% of 922 failures are timing failures (stuck API calls and
slow responded API calls)

Posted on Aug 27, 2012 11:57 AM

Symptom: It took 16 minutes for an instance to stop.

Root cause: n/a.

Solution: The AWS engineer advised to try “force stop” twice
if this happens next time.

Motivation

5

We conducted experiments on the timing behaviour of
5 EC2 API calls and observed that around 4.5% have
long tail characteristics

EC2 API

20.0%

18.0%

16.0%

14.0% °

12.0% @

10.0%

8.0% o®

6.0% e

4.0% °<

2.0% o o

0.0% oo © ocoo oo CE—Cw—
0 20 40 60 80 100 120 140 160 180 200

Return Time (s)

Measurement results of EC2 “launch instance”

Motivation

6

Cloud API timing failures: major causes
of the long-tail of operation tasks

Existing research focuses on reducing
errors and repair time

One step of an operation: parallel or
deep hierarchical

One slow API response will cause the initial
operation to be slow to respond

Tail-Tolerant Mechanisms
S

force-fail-a

continue-allocate o emssssssseey Failed
orreallocate ~ __-=~""
, - p
alternative- 2*% |
request / v
- - . | \] o
¢] . ' ¥ 1 ¢ force-fail-s
Requested J hormal- Allocated Started
- rquEsF \ I complete
; \ -
hedge-request \ k. force-complete-a
cancel-allocaté, et rt." S
cancel-sta ~. o
“ ! Completed
I

\

Cancelled

Tail-Tolerant Mechanisms
e

force-fail-a _
continue-allocate eemmememmeese Failed
or reallocate " -
alternative- -~ -
/ \] /
request ! \ I ’
goERmy, I \] ,I
. - : ¥ .7 force-fail-s
R d =3 Allocated ——— Started
equeste ocate tarte
q normal- _ <=
X reqyest v ceallocate- complete
S e = \ T s - !
- \ ™
hedge-request \ = ,L ~ force-complete-a
cancel-allacaté‘ | ! Tvs ol
\ Cance ~Stary =3 Completed

\‘ P
{ Cancelled }

Issue more request than we
need and then cancel the

remaining immediately after
the required number is reached

Tail-Tolerant Mechanisms
o

force-fail-a _
continue-allocate o emssssssssoy Failed
orreallocate ~ _.~-~""
alternative- -~ ’
/ N I /
request ' v ’
5 B - - I \] ,I
£ A _7 force-fail-s
start
Requested Allocated - Started
N Ie&lrncate- complete
I - \ il - !
- \ -
hedge-reqpest \ = ,L ~ force-complete-a
cancel-allocaté ! Sea
) cancel-start/ -~
\ I Completed

\‘ P
{ Cancelled }

An alternative API is requested
at the same time as the original

APl is requested

Tail-Tolerant Mechanisms
e

force-fail-a
continue-allocate eesswsssss=e "[Failed]
orreallocate | _.=="7 -
alternative- N Ly ,
request \ ’

-

" ¥ _ <7 force-fail-s
R d All d = S d
equeste ocate tarte
q normal- <= =

X reqyest ceallocate- complete
il T \ ad P - [
hedge-request \‘ - -.’j_ ~ force-complete-a

cancel-allacaté‘ | ! Tvs ol
\ cance -sl:ar? ~~ Completed

\‘ P
{ Cancelled }

If the API request sent to an
instance is failed or there is no

response from the cloud

infrastructure

Tail-Tolerant Mechanisms
s

force-fail-a
continue-allocate
or reallocate -
alternative- -~ ’

— -
-
-
‘,-'

F \]
request ' v
- - ., . I \ I ’
‘ S ' S e < force-fail-s
- S
[Requested T Allocated Started
\ rqu!sf - \ fe-alTDEH?E'
il P 0 \ T~ s -)
hedge-request \ =~k .L quce-éskmplete-a
cancel-allacaté‘ . I:aru' =
\ sstadbnd b *‘|\ Completed

\‘ P
{ Cancelled }

When an API call has
been retried for several

times and continue to fail

APl Wrapper

12

API wrapper | Pattern Implementation details
launch- hedge-request, The API wrapper launches two instances when it receives a request.
instance continue-allocate | If one instance is launched within the time specified in the timing

profile of launch-instance, the API wrapper will kill the other one.
If neither of them launches, then the API wrapper re-launches

another two 1nstances.

start-instance

alternative-
request

The API wrapper starts an instance and launches a new instance
using the same 1mage simultaneously, and cancels the one with
longer return time.

Stop-instance

force-complete-a

The API wrapper launches a call to the stop-instance API, waits for
the time specified in the timing profile of stop-instance. If the call is
not completed, the API wrapper forces the instance to stop using
“force-stop” APIL.

attach-volume

alternative-
request

The API wrapper attaches volume to an instance and launches a

new instance at the same time. The wrapper waits for the time
specified in the timing profile of attach-volume. If the call is not

completed, it re-attaches the volume to the newly launched instance.

detach-volume

force-complete-a

The API wrapper waits for the time specified in the time profile of
detach-volume. If not completed, then the API wrapper force-
detaches the volume.

Evaluation of APl Wrapper

13

o Evaluate APl wrapper on EC2

-1 For each APl we wrapped, we measure the return time

1000 times respectively
®EC2 APl A APl wrapper @ EC2 APl A APl wrapper
20.0% 20.0% <
18.0% s 18.0%
16.0% @ 16.0% 5
14.0% . 14.0%
12.0% A 12.0% °
10.0% - ‘0‘ 10.0% ';A
cox | a cx |43
0.0% o: 4.0% R
ORI — om el e
Return Time (s) Return Time (s)

Measurement results of “start instance”. Measurement results of “stop instance”.

Deployment Architecture Tactics

14

Immutable server

Operators make an image which contains a new version of
everything an application needs. After the image is
launched, nothing more is added or allowed to be changed.

Micro service

Operators break down an application into micro-services
and make each service run on different VMs.

Lightweight instances and less performance interference
Redundancy:

Operator can run more than the required number of VMs to
avoid long-tail operations.

Evaluation of Deployment Architecture Tactics
We evaluate the deployment architecture tactics
through automatically upgrading 50 AMP stacks
(Apache + MySQL + PHP) by shell scripts.

ran on EC2
upgrades the AMP stack from Apache 2.0.65, MySQL

5.1.73, and PHP 5.2.17 to Apache 2.2.22, MySQL
5.5.35, and PHP 5.3.10 respectively.

Evaluation of Deployment Architecture Tactics

16

We implemented the three deployment tactics, and compared
the number of the successfully upgraded VMs using different

tactics with a baseline, which represents upgrade without any
tactics.

Ran each of the 4 test cases 100 times

Baseline: upgrade AMP running on 50 VMs to the recent versions directly
on the original VMs.

Immutable server: create an image of VM which runs the new version of
AMP and launch 50 VMs using the image. Then we terminate the VMs
running old versions of AMP.

Micro services: run Apache and PHP on 50 VMs and run MySQL on
another 50 VMs, then we upgrade them on the original VMs directly.
Redundancy: launch 3 extra VMs with AMPs before we do upgrade.

After the 3 extra VMs are successfully launched, we start upgrading the
53 VMs with AMPs.

Evaluation of Deployment Architecture Tactics
-, a4 >0

“ Baseline “ Immutable servers * Micro services ° Redundancy
a8 -]
90% rd
me
80% .
a []
70% s
|
60% .
50% o |
L]
40%
. a
30% s
e
20% 2
'
10% "t
]
o% | I | | | 1 | 1 . ‘L‘. ' 1
0 5 10 15 20 25 30 35 40 45 50 55
Number of AMPs which are upgraded successfully

Measurement results of deployment tactics.

Conclusions

18

We proposed APl mechanisms and deployment
architecture tactics to tolerate long-tail issues of
operations in cloud

We implemented our mechanisms as a tail-tolerant
wrapper around EC2 APIs

Our initial evaluation shows that the mechanisms and
deployment architecture tactics can remove the long tails
Future work:

implement the rest of mechanisms in APl wrapper

model the reliability of cloud operations in SRN

Thanks you!

