LOOM: Optimal Aggregation Overlays for In-Memory Big Data Processing

William Culhane, Kirill Kogan, Chamikara Jayalath, Patrick Eugster
Department of Computer Science, Purdue University

Presented at HotCloud ‘14
June 18, 2014
Talk Outline

• Motivation and Background
• Model
• Heuristics
• Implementation
• Experimental Setup and Results
• Conclusions and Future Work
Motivation and Background

• In-memory Big Data, e.g. RDDs [Zaharia et al.; NSDI 2012] Presto [Venkataraman et al.; Eurosys ‘13]

• Aggregation specific (MapReduceMerge, Yang et al., SIGMOD ‘07)

• Minimize latency of tree overlay

• Mathematically modeled optima [Kim et al.; IEEE Transactions on Aerospace and Electronic Systems 32, 2 (‘96)]

• Minimal analysis and configuration
Model

• Compute-Aggregate $g(f(x_0) \cdots f(x_n))$

Aggregation Overlay

Computation at Local Nodes

• Customizable fanout

(a) Fanout = 2
(b) Fanout = 4
(c) Fanout = 16
Examples

• Merge sorted elements
• Min/Max/Average
• Word count
• Top-k matching
Aggregation Function Rules

- Associative
 \[g(g(\bar{x}), \bar{x}') \equiv g(\bar{x}, \bar{x}') \]

- Cumulative
 \[g(g(\bar{x}), g(\bar{x}')) \equiv g(\bar{x}, \bar{x}') \]

- Commutative
 \[g(\bar{x}, \bar{x}') \equiv g(\bar{x}', \bar{x}) \]
Assumptions

• Assumptions on latency, not correctness
• Trees – each input included exactly once
• Full and balanced trees
• Monotonic aggregation with respect to size
• Homogenous levels
• Monotonic and constant ratio size changes
Variables

- n – Number of leaf nodes/inputs
- d – Fanout of aggregation tree
- \overline{x} – Set of inputs (output from computation or prior aggregation)
- $g(\overline{x})$ – Aggregation on \overline{x}
- $g^c(\overline{x})$ – Time cost of aggregation function
- y_0/y – Ratio of output size to single input size
Heuristics

<table>
<thead>
<tr>
<th>y_0</th>
<th>Optimal Fanout</th>
<th>Sublin. $g^c(\bar{x})$</th>
<th>Linear $g^c(\bar{x})$</th>
<th>Superlin. $g^c(\bar{x})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_0 < 1$</td>
<td>2</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>$y_0 = 1$</td>
<td>e</td>
<td>√</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>$1 < y_0 < n$</td>
<td>$\min(n, (1 - \log_n y_0)^{-\log_y_0 n})$</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y_0 > n$</td>
<td>n</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

√ - Proven Optima
* - Proven Near-Optima
Implementation

• Independent aggregation subsystem

• Fifth main operation `parallelAggregate()` in FlumeJava [Chambers et al.; PLDI ‘10]
Experimental Setup

• Amazon EC2
• Maintained assumptions (full and balanced)
• Microbenchmarks
 – Generated data and simulated linear aggregation
 – 16 leaves
• Real world applications
 – Word count and top-\(k\) match on Yahoo! Hadoop cluster logs
 – 16 and 64 leaves
Results (Microbenchmarks – 1/2)

(a) Series as size ratio

(b) Series as fanout
Results (Microbenchmarks - 2/2)

(a) Practice vs. model, $y_0 = \frac{1}{n}$

(b) Practice vs. model, $y_0 = 1$

(c) Practice vs. model, $y_0 = \sqrt{n}$

(d) Practice vs. model, $y_0 = n$
Results (Applications)

(a) Top-k match, $n = 16$

(b) Top-k match, $n = 64$

(c) Word count, $n = 16$

(d) Word count, $n = 64$
What we have done

• Codified compute-aggregation definition
• Mathematically modeled aggregation time
• Provided heuristics for lightweight optimization
• Results usable even without our system with known y_0
• Implemented subsystem with FlumeJava
• Experimentally validated modeled optima
What we are going to do

• Study the currently unproven cases
• Determine a good way to find/specify y_0 (preferably automatically)
• Expand the limits of the testing
• Deal with broken assumptions
• Deal with heterogeneity
• Work on streaming inputs
Questions?