Rethinking the Network Stack for Rack-Scale Computers

Paolo Costa
paolo.costa@microsoft.com

joint work with Hitesh Ballani and Dushyanth Narayanan
Hardware Evolution in Data Centers

Trend towards customization

Increase work done per dollar (CapEx + OpEx)
Hardware Evolution in Data Centers

Scale out vs. scale up
Many commodity servers rather than few expensive servers
Hardware Evolution in Data Centers

- Custom layout
- Remove unnecessary components (e.g., GPGPUs, USB ports)
Hardware Evolution in Data Centers

Integrated fabrics
Higher density and bandwidth with lower power consumption
Hardware Evolution in Data Centers

System-on-Chip (SoC)
CPU, IO controllers, NIC/fabric switch on the same die
Hardware Evolution in Data Centers

Silicon Photonics
High-bandwidth / low-latency interconnect (resource disaggregation)
Hardware Evolution in Data Centers

1 rack unit (RU) 2 Ru 4-10 Ru Rack-scale

\textit{intra-server BW} \ll \textit{inter-server BW}

\textit{intra-server BW} \approx \textit{inter-server BW}
Hardware Evolution in Data Centers

Rack-scale Computers
The rack is becoming the new unit of computing in data centers

Great opportunity to revisit early design assumptions and rethink the software stack and hw/sw co-design
A First Step: Rethinking the Network Stack
A First Step: Rethinking the Network Stack

Is it just a faster network or is it fundamentally different?
A First Step: Rethinking the Network Stack

Many designs are possible but some trends are emerging:
A First Step: Rethinking the Network Stack

Many designs are possible but some trends are emerging:

1. Distributed Switching Fabric

✓ High path diversity
A First Step: Rethinking the Network Stack

Many designs are possible but some trends are emerging:

1. Distributed Switching Fabric
 - High path diversity

2. Tight CPU / network integration
 - Direct control on network resources
A First Step: Rethinking the Network Stack

Many designs are possible but some trends are emerging:

Research Question:
How can we take advantage of these features to design a new network stack optimized for rack-scale computers?

Focus of this work
How to route packets (routing)?
At what rate should the packets be sent (rate control)?
RaSC-Net Design

Goals

1. Leverage path diversity and ensure load balance
2. Support arbitrary and dynamic traffic matrixes
3. Achieve low queuing
4. Support custom rate allocation policies
 - priority, deadline-based, tenant-based, resource-based, ...
RaSC-Net Design: Routing

[Diagram showing network topology with nodes labeled A and B, and yellow and blue circles indicating source and destination.]
RaSC-Net Design: Routing

Valiant Load Balancing (VLB)
Randomly selects an intermediate destination per each packet
RaSC-Net Design: Routing

Valiant Load Balancing (VLB)
Randomly selects an intermediate destination per each packet
RaSC-Net Design: Routing

Valiant Load Balancing (VLB)
Randomly selects an intermediate destination per each packet
Non-minimal routing
Intermediate destinations do not need to lie on the shortest path
RaSC-Net Design: Routing

Non-minimal routing
Intermediate destinations do not need to lie on the shortest path
RaSC-Net Design: Routing

Why does it work?
VLB aims to transform any traffic matrix into a uniform one
Link load balancing (Goal #1) and independent of traffic matrix (Goal #2)
RaSC-Net Design: Routing

VLB Drawback #1: Path Stretch
Average path length and link utilization increases

Solution: Locality-aware variants of VLB can be used (weighted choice)
RaSC-Net Design: Routing

VLB Drawback #2: Out of order packet arrival
Packets need be reordered at the destination (jitter)
Solution: low diameter and minimize queuing delay
RaSC-Net Design: Routing

Key observation: VLB enables global visibility
Nodes inspect packet headers of forwarded packets
They can locally reconstruct the traffic matrix
RaSC-Net Design: Routing

Key observation: VLB enables global visibility
Nodes inspect packet headers of forwarded packets
They can locally reconstruct the traffic matrix
RaSC-Net Design: Routing

Key observation: VLB enables global visibility
Nodes inspect packet headers of forwarded packets
They can locally reconstruct the traffic matrix
RaSC-Net Design: Rate Control

Rate Allocation
Given the knowledge of the topology and the traffic matrix, each node can locally derive the correct rate for its flows.
RaSC-Net Design: Rate Control

Given the knowledge of the topology and the traffic matrix, each node can locally derive the correct rate for its flows.
RaSC-Net Design: Rate Control

Rate Allocation
Given the knowledge of the topology and the traffic matrix, each node can locally derive the correct rate for its flows.
RaSC-Net Design: Rate Control

Rate Allocation
Given the knowledge of the topology and the traffic matrix, each node can locally derive the correct rate for its flows.
RaSC-Net Design: Rate Control

Rate Adaptation
When a packet from a new flow is received, nodes can update their rates accordingly.
RaSC-Net Design: Rate Control

Key result
A traditionally distributed problem (rate control) becomes a local operation
RaSC-Net Design: Rate Control

Low queuing (Goal #3)
No need to probe the network a la TCP
Rates are chosen so as to minimize queuing
RaSC-Net Design: Rate Control

Beyond max-min fairness (Goal #4)
Since rate allocation is now a local computation, it is easy to encode different allocation policies.
Something (NOT) to worry about...
Something (NOT) to worry about...

1. Short flows
 - Our protocol needs a few packets to converge...
 - We can reserve some spare capacity to absorb short (and newly created) flows
 - Small packets and deterministic routing can also reduce convergence time

![Diagram of network topology]

- Flow A -> B
- Flow C -> D

Paolo Costa
Rethinking the Network Stack for Rack-scale Computers
Something (NOT) to worry about...

1. Short flows
 - Our protocol needs a few packets to converge...
 - We can reserve some spare capacity to absorb short (and newly created) flows
 - Small packets and deterministic routing can also reduce convergence time

2. Computation overhead
 - In general, max/min computation is expensive ...
 - ...but with VLB a flow uses almost all links
 - Hence, the most bottleneck link is actually the bottleneck for almost all active flows
 - Approximate results can also be used (utilization vs. computation trade-off)
RaSC-Net: Preliminary Results

• Simulation setup
 – 512-node 3D torus (8 x 8 x 8)
 – 6 10Gbps links / server
 – Permutation matrix with varying number of sources (load)
 – 10-MB flows all starting at the same time

• Baselines
 – TCP: ECMP routing protocol (single path per flow) + TCP
 – Idealized (unlimited per-flow queues)
 - Ideal-ShortestPaths: Packet spraying (minimal routing)
 - Ideal-VLB: Valliant Load Balancing
Flow Completion Time (99th perc.)

![Graph showing Flow Completion Time vs Network Load]

- Better
- Worse

Number of sources increases
Flow Completion Time (99th perc.)

Number of sources increases
Flow Completion Time (99th perc.)

TCP performance is limited by single path.

Using non-shortest paths increases bandwidth available.

RaSC-Net approximates VLB.

Number of sources increases.
Flow Distribution (load = 0.5)

CDF (Flows)

Flow Completion Time

TCP
Ideal-ShortestPaths
Ideal-VLB
RaSC-Net
Flow Completion (load = 0.5)

- ShortestPaths achieves lower median but with a tail
- Long tail due to single path
- VLB ensures good balance across flows
- The price for fast computation
Beyond Rate Control...

1. **Converged fabric**
 - The same fabric is used to carry IP, memory, and storage traffic
 - Can we design a unified protocol stack (rather than PCI, QPI, SATA, DDR3, …)?
 - How to handle heterogeneous classes of traffic (each with different requirements)?

2. **Inter-rack connectivity**
 - How to interconnect multiple racks?
 - Oversubscription? Protocol bridging?

3. **Resource management**
 - Fast rack fabric blurs the boundaries between local and remote resources
 - How to assign resources to applications?
 - How to handle distributed faults?
 - What’s the programming model?
Summary

Paolo Costa

Rethinking the Network Stack for Rack-scale Computers

Rack-scale Computers @ MSR Cambridge http://research.microsoft.com/rackscale