An Operating System for the Home

HomeOS

Colin Dixon (IBM Research) Ratul Mahajan Sharad Agarwal
A.J. Brush Bongshin Lee Stefan Saroiu Paramvir Bahl
HomeOS

• PC-like organization for tech in the home
 – Ease management and extensibility

• Running in 12 *real* homes for 4–8 months

• Used by 42 student developers at 10 institutions
Where’s my smarthome?

Tasks (software)
- Energy monitoring
- Alerts w/ Photos
- Climate control
- Keyless entry
- Remote lock

Devices (hardware)
Gap between potential and reality

Envisioned by many researchers and companies
Struggling to break into the mainstream
– Despite commercial availability since 1970s
Understanding the gap

• Study of homes with modern automation
 – 31 people across 14 households
 – Enjoyed convenience, peace of mind and control
 – But, had difficulty in two key areas:

 Poor extensibility

 ![Adding devices and tasks](image)

 Management pain

 ![Access control](image)
Existing abstractions for home tech

Network of devices

Management is still hard
- Users must manage each device/task
- Developers must deal directly w/ h/w

Appliance

Extensibility is still hard
- Closed set of tasks
- Closed set of devices
The home as a PC

View the home as a computer

- Networked devices ≈ peripherals (w/drivers)
- Tasks over these devices ≈ applications

- Adding devices ≈ plugging in a peripheral
- Adding tasks ≈ installing an application
- Managing networked devices ≈ managing files
HomeOS: An OS for the home

HomeOS logically centralizes all devices

Users interact with HomeOS, not individual devices

HomeStore helps find compatible devices and apps
Challenges in the home

Non-expert users must become network managers
 – Need rich, but easy to use management tools
 – *E.g.*, *misconfigured app may be able to unlock a door*

Developers struggle to build apps
 – Heterogeneity in tasks, control, device and topology

New classes of devices arrive frequently
 – *E.g.*, *Kinect, energy meters, connected TVs, etc.*
HomeOS architecture

Application layer

Management layer

Device functionality layer (DFL)

Device connectivity layer (DCL)

Tasks

Control

Device

Topological

Heterogeneity source handled
DCL and DFL (Drivers)

DCL provides basic connectivity to devices
DFL exports device functionality as a service
 – Services are protocol-independent
 – Identified using roles and operations
 – Kernel does not parse or understand services

Layer of Indirection between protocols and apps

<table>
<thead>
<tr>
<th>Dimmer</th>
<th>PTZ Camera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set(level)</td>
<td>GetImage() \rightarrow bitmap</td>
</tr>
<tr>
<td>Get() \rightarrow level</td>
<td>Up(), Down()</td>
</tr>
<tr>
<td></td>
<td>Left(), Right()</td>
</tr>
<tr>
<td></td>
<td>ZoomIn(), ZoomOut()</td>
</tr>
</tbody>
</table>
Management Layer Requirements

- Time-based access control
- Apps as security principals
- Easy-to-verify settings
Management Layer

Access control policy:

• Datalog-based rules
 - \([\text{user group, device, app, } t_{\text{start}}, t_{\text{end}}, \text{dayOfWeek, priority, accessMode}]\)

• Rules include \textit{time} and \textit{applications}

• Allow users to query rules to verify their intent

Easier to reason about than ACLs in current OSes
Scales better than 2-D grid of users and devices
Application layer

Apps consume and compose abstract device interfaces from the DFL

Management layer interposes on accesses

Manifests help with compatibility testing
 – Lists of mandatory and optional features
 – E.g., mandatory: \{TV, SonyTV\}, \{MediaServer\}
 optional: \{Speaker\}
Demo
Evaluating HomeOS

Key questions:
• Can non-technical users manage HomeOS?
• Can developers easily write apps and drivers?

Method:
• Field experiences
 – 12 real homes and 42 student developers
• Controlled experiments
Field experiences: The good

Users could manage their HomeOS deployments

Users particularly liked the ability to organically extend their technology

Developers found the programming abstractions and layering to be “natural”
Sample third-party applications

For more, see the HomeOS site:
http://research.microsoft.com/homeos/
Field experiences: The bad

Users found it hard to diagnose faults

Interoperability protocols can be fragile

Not all device features may be exposed over the network
Controlled Evaluations

10 developers asked to write one of two realistic apps
 – “music follows the lights” or “custom lights per user”
 – No prior experience with HomeOS
 – 8 finished in under 2 hours

12 non-expert users given 7 representative mgmt. tasks
 – No training with management interface
 – 77% completion rate; 89% after removing an outlier task

Performance results in the paper
Conclusions

HomeOS eases extensibility and management by providing a PC abstraction for home technology

Still lots of exciting things to do!
 – What core capabilities should be in every home?
 – Can we provide non-intrusive identity inference?

For more info and to request code:

http://research.microsoft.com/homeos/