Off-Path Attacking the Web

Yossi Gilad and Amir Herzberg
Computer Science Department, Bar Ilan University

WOOT'12 presentation
Oscar: the Off-Path Attacker

Bob, I leave you!
Alice

Bob, I love you!
Alice

Off-path Oscar 6.6.6.6

Alice 2.2.2.5

Bob 3.3.3.7
Why Off-Path Attacks?

- Why not MitM, Eavesdropping?
 - Harder: physical access or control sw/router

- Can Oscar spoof IP packets?
 - Often not: most ISPs ingress-filter
 - But enough ISPs don’t… not so easy to filter

- What of challenge-response like TCP, DNS?
 - Correct use of challenge-response suffices
 - But: Often, challenge-response used incorrectly
 - Since used for other purposes, e.g., SEQ/ACK
 - This work: Off-path Web-site Injection
 - Allows XSS, phishing and more…
Related Works

- (Off-path) TCP injections:
 - Predictable ISNs: Morris85, Mitnick95, Zalewski01,05
 - Address-based client authentication vulnerable [Bellovin89]
 - `PoC` for Windows clients: klm07
 - We improve (FW, efficiency), extend to exploit
 - QianMao12, QMXie12: (limited) malware
 - QM12: Also assumes seq#-checking-fw
 - And: only learns server seq#  can’t inject to Windows

- Other off-path attacks (not injections)
 - TCP & Tor traffic analysis: GiladH12
 - DNS poisoning: Kaminsky08; H+Shulman12
 - IP packet intercept, modify and kill: GiladH11
Attack Goal and Scenario

1. Alice surfs to Oscar’s site
2. Alice’s browser runs Oscar’s script (puppet)
3. Puppet sends requests to Bob
4. Attacker injects into connection
 - E.g., sends script to Alice, spoofing as Bob

1. Surf to Oscar.com
2. Send page With script
3. Script opens (hidden) frame of Bob.com
4. Inject (e.g., script) as content from Bob
Attack and Talk Overview

- Learn connection identifiers (IPs:ports)
- Learn server’s sequence number
- Learn client’s sequence number
- Exploit(s):
 - XSS
 - CSRF
 - Phishing
- [Defenses and conclusions]
Learning connection identifiers

- **Identifiers**: <srcIP:srcPort, dstIP:dstPort>

- **Puppet opens connection to Bob (server)**
 - ServerIP:port selected by puppet (attacker)
 - Client IP: known from client connection to Oscar

- **Client port: sequentially assigned...** [Windows,...]

- **Not sequential? Test all** (cf. [GiladH12])
Finding Server SEQuence Number

- **How?** Use TCP responses to *probe* packets.

 Empty-ack packets provide useful response:
 - If SEQ out of WIN: send ACK (to re-sync)
 - If SEQ is within WIN: no response (to avoid `storm`)

- **How to detect if response is sent?**
 - Use IP-ID side channel!
 - **IP-ID:** 16 bit identifier in IP header
 - Used to correctly reconstruct packet from fragments
 - In Windows: globally- incrementing counter
 - One connection (to attacker) leaks info about another!

- Old trick: NMAP’s idle-scan, Bellovin machine-count,...
Finding Server SEQuence Number

1. Puppet opens connection to server
2. Oscar sends query-probe-query:
 1. Query: unordered 1-byte packets \rightarrow ACK (ipid)
 2. Probe (srcIP:server): empty-Ack with $SEQ=i\cdot w$
 - w is estimate of WIN size
 - Found \rightarrow binary search finds exact SEQ !!
Attack and Talk Overview

- Puppet opens connection to server
 - Known IPs and server port
- Learn connection identifiers (client port)
- Learn server’s sequence number
- Learn client’s sequence number
- Exploit(s):
 - XSS
 - CSRF
 - Phishing
- [Defenses and conclusions]
Finding Client SEQuence Number

- We already know server seq (and IPs, ports)
- To find client seq#: send pkt w/ data
 - With server’s IP:port, correct seq#
 - TCP’s handling depends on Ack#
- For Windows clients:
 - As of XP SP2
 - Silently discards pkt with `old` ack number
 - Otherwise: send ACK
- Leaks: Ack#->UNA
- Binary search...
TCP Injection: Challenges

- Firewall passing: Ok
- Lost probes: double-check `no-ack` events
- Lost query/answer: detect via TCP's Acks
- Irrelevant packet sent (IP-ID incremented): repeat `suspect tests`
- Not too many extra checks (or failures)...
 - When in doubt, read the paper!
- Results...
TCP Injection: Success Rates

- **Scenario:**
 - Apache server, Windows clients, 10Mbps
 - Attacker: 1Mbps; RTT to client: 100msec
 - Avg. time: 102sec [std deviation: 18sec]
Attack and Talk Overview

- Puppet opens connection to server
 - Known IPs and server port
- Learn connection identifiers (client port)
- Learn server's sequence number
- Learn client's sequence number

- Exploit(s):
 - XSS
 - CSRF
 - Phishing

[Defenses and conclusions]
Exploiting Injections: XSS, CSRF

- Cross Site Scripting (XSS): cause browser to run MalScript in context of victim.com
 - Known XSS: exploit bug in site or browser
 - Off-path-injected XSS: no need for vulnerable site/browser!
 - Can post fake requests – like CSRF, but...
 - Circumvents: SOP, origin header, CSP, referrer...
XSS Exploit: Results

- Top 1024 sites, 10Mb win clients, 1Mb Oscar
- Avg 32 pkts/s `noise`
- Immune sites: mostly SSL or non-persistent
Phishing by Injection

- Off-path XSS, CSRF may fail:
 - To collect user-entered data, e.g., passwords
 - Esp. if site uses SSL for passwords
- Alternative: phish / deface!
 - Change contents: steal PWDs, push malware...
Phishing by Injection

- Off-path XSS, CSRF may fail:
 - To collect user-entered data, e.g., passwords
 - Esp. if site uses SSL for passwords

- Alternative: phish / deface!
 - Change contents: steal PWDs, push malware...

- Spoof page only when user asks for it
 - Puppet maintains open connection
 - Detect user requesting victim page
 - By detecting increase in client-seq-number
 - `Kill` real response from server
 - Send data with server’s SEQ in advance
Defenses and Conclusions

- **Defenses**
 - **Client:** Use unpredictable IP-ID, ports
 - Not random... see paper for details
 - **Server / FW:** drop connections with too many suspect (empty) Acks

- **Conclusions**
 - TCP may not be secure against off-path!
 - SOP is not much better than client address auth!
 - Use `real’ security: SSL/TLS, IPsec, etc.
 - Attacks may be improved, abused further...
Thank You!

- Questions?
- Demo??