ECOS: Practical Mobile Application Offloading for Enterprises

Aaron Gember, Chris Dragga, Aditya Akella

University of Wisconsin-Madison
Mobile Device Trends

• More mobile device usage in enterprises
 – Need to run complex applications

• Complex mobile applications have significant CPU, memory, and energy demands

Need to reconcile application demands and device capabilities
Designing for Remote Computation

• Mobile apps designed to use remote services
 – e.g., Google Voice Search, Apple’s Siri, Amazon Silk
 Requires developers to use this paradigm

• Remote desktop / VNC
 User interface not designed for mobile devices
Application-Independent Offloading

• Dynamically divide execution between mobile device and compute resource
 – Application code unmodified
 – Informed by model and/or runtime monitoring

• Several proposed systems – Chroma [Balan et al. 2003], MAUI [Cuervo et al. 2011], CloneCloud [Chun et al. 2011]
Roadblocks to Offloading Adoption

• Privacy and trust
 – Proposed systems largely ignore privacy
 – Privacy is paramount in enterprises

• Resource sharing and churn
 – Proposed systems consider one device, plus a dedicated resource
 – Enterprises have *many devices* and *many resources*
Enterprise-Centric Offload System allows many devices to opportunistically leverage diverse compute resources, while controlling where applications offload depending on privacy, performance, and energy constraints of users and apps.

Augment offloading decisions with privacy and resource considerations
Outline

✓ Offloading benefits and roadblocks
 • Privacy and trust
 • Resource sharing and churn
 • ECOS Prototype
 • Evaluation for small enterprise
Privacy and Trust

• Data may leave device without explicit actions

• Sufficient privacy requires
 – Protecting execution state in transit
 – Executing on trusted compute resources

Offloading benefits and opportunities should not be significantly diminished
Overhead of Privacy Protection

• Encrypting state in transit with TLS
 ✗ High latency and energy overhead

• Limited number of trusted compute resources
 ✗ Reduced offloading opportunities
Data-Driven Privacy Protection

<table>
<thead>
<tr>
<th>Data Privacy</th>
<th>Resources Trusted</th>
<th>Communication Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Any</td>
<td>None</td>
</tr>
<tr>
<td>Enterprise</td>
<td>All internal resources</td>
<td>None</td>
</tr>
<tr>
<td>User</td>
<td>Select servers and desktops</td>
<td>Encrypt always</td>
</tr>
</tbody>
</table>

Policy specifies labels for devices & applications
Resource Sharing and Churn

 Systems consider one device and static resource

 Enable many mobile devices to opportunistically leverage diverse compute resources

• Challenges
 – Devices with varying applications and objectives
 – Limited resources and diverse capabilities
 – Offload requests not know a priori
Multiplexing Based on Objective

• Offloads with same objective use same resource

• Performance improvement
 – Resources with unused CPU > mobile CPU speed

• Energy savings
 – Separate from performance seeking offloads
Resource Affinity

• Use same resource for subsequent offloads
 ✔ Cache state → less latency and energy overhead
 ✗ Assumes constant resource availability/capacity

• Resource not capable/available
 – Deny offloads until capacity increases
 – Assign a new resource, re-transfer or migrate state
Prototype
Evaluation

• Small enterprise setting
 – 12 phones (Android emulator)
 – 4 to 6 desktops (2.4Ghz quad-core, 4GB RAM)

• Two applications
 – AI-decision making (Chess)
 – Speech-to-text (emulated)

• Varying objectives and privacy levels
Performance Improvement

![Bar chart showing the performance improvement with different numbers of desktops and phones. The chart compares the time (in seconds) for no offloading, 4 desktops, and 6 desktops. The bars indicate a significant reduction in time for the offloading scenarios.]
Summary & Future Work

• Enterprise-Centric Offloading System
 – Considers privacy requirements/costs
 – Resources assigned based on user goals
 – Maximize latency and energy benefits

• Future Work
 – Dynamic privacy label assignment
 – Network path provisioning – mobility, bandwidth
 – Larger evaluation