Matryoshka:

Hiding Secret Communication in Plain Sight

Iris Safaka, Christina Fragouli, Katerina Argyraki

• *Free* communication systems → Give away some *privacy*

• *Free* communication systems → Give away some *privacy*

- *Free* communication systems → Give away some *privacy*
- Users are mostly aware of this trade-off

- Governments and courts request user data from tech companies
 - Eg. Google handed in data for 100K user accounts (2014)

- Alice and Bob wish to communicate privately
- Eve always wants to know what they talk about

Encryption?

- Alice and Bob wish to communicate privately
- Eve always wants to know what they talk about

Encryption? Interruption of free service

- Alice and Bob wish to communicate privately
- Eve always wants to know what they talk about

Encryption? Looking suspicious

How about **hiding** the secret communication?

Steganography

Hide secret data within other "innocent" data

Steganography

Hide secret data within other "innocent" data

Linguistic steganography

- Traditional approaches apply automated modifications
 - Embed secret message into a given text
 - Eg. synonym substitution, sentence manipulation etc.

- Drawbacks
 - Introduce unnaturalness to the text
 - Require off-line access to resources
 - Modest covert rates

Our goal: human-like text, implementable, high rate

Matryoshka

Such a **nice weather** today!

Encoder design

- Mixed Huffman Compression
 - Character Huffman ightarrow names, unusual words, etc.
 - Word Huffman \rightarrow frequent English words
- Dictionary
 - Maps bit sequences to sets of words
 - More frequent than infrequent words & repetitions
- N-gram Language Model
 - Models how dictionary words appear in Natural Language
- User Enhancement Interface
 - Assist the user in completing the sentences

Decoder design

Dictionary

0000	cat, cook, nice
0001	nice, play, cool
1111	cool, weather, run

Such a **nice weather** today!

- Repeating words in dictionary creates ambiguity
- Probabilistic decoder
 - K-order Markov model of English characters
 - Drops early improbable sequences

Evaluation

Experimentation with human users in Amazon's Mechanical Turk

" I have **become** tired of **facebook's** many **years** of existence. The **change** over the **years** by the engineers sucks. It seems **facebook's** wacky **algorithm** will **never** make sense. The **posts** make the **code** on **facebook** obsolete."

"Does facebook's CEO feed people feed dogs. Can't yet use data base set book. Two posts are uses people facebook apps. Mary Cox able humans into keeping up."

Evaluation

- Experimentation with human users in Amazon's Mechanical Turk
- User effort
 - Average task completion time approx 5 mins
 - Average of 5 extra words inserted per sentence
- End-to-end covert rate
 - Average 3 bits per word
 - Eg. to hide 5 words we need to send 73 words
- Decoder error rate
 - Zero error rate (~95%)
 - Partially corrupted messages (~15% chars.)

Evaluation

• Automatic test: Is a sentence NL or not?

Summary

- Linguistic steganography for reclaiming some privacy
- Human-like text, implementable, high covert rate
- Prototype implementation
- Experimentation on Mechanical Turk
- Automated steganalysis test

Next steps

- Investigate alternative automated steganalysis tests
 - Eg. using Word Embeddings
- Identify further vulnerabilities and test
- Finalize system implementation

Questions?