Catching Bandits and Only Bandits: Privacy-Preserving Intersection Warrants for Lawful Surveillance

Aaron Segal, Bryan Ford, and Joan Feigenbaum
Yale University
FOCI 2014

"...an unspeakable blasphemy." - @Dymaxion

Overview

Mass Surveillance and Privacy – Introduction

Privacy Principles for Open Surveillance Processes

Case Study – High Country Bandits and Lawful Intersection Protocol

Implementation & Evaluation

"State of the art" discussion on surveillance and privacy:

- Secret processes for data collection
- Public is asked to **trust** the government
- Presumed tradeoff between national security and personal privacy
- Ideal world: No surveillance

"State of the art" discussion on surveillance and privacy:

- Secret processes for data collection
- Public is asked to **trust** the government
- Presumed tradeoff between national security and personal privacy
- Ideal world: No surveillance
 - Realistic goal: Surveillance with privacy protection

- "State of the art" discussion on surveillance and privacy:
 - **Secret** processes for data collection
 - Public is asked to **trust** the government
 - Presumed tradeoff between national security and personal privacy
 - No need to abandon personal privacy to ensure national security
 - Ideal world: No surveillance
 - Realistic goal: Surveillance with privacy protection

- "State of the art" discussion on surveillance and privacy:
 - **Secret** processes for data collection
 - Public is asked to **trust** the government
 - Accountability guaranteed by existing cryptographic technology
 - Presumed tradeoff between national security and personal privacy
 - No need to abandon personal privacy to ensure national security
 - Ideal world: No surveillance
 - Realistic goal: Surveillance with privacy protection

"State of the art" discussion on surveillance and privacy:

- Secret processes for data collection
 - Open processes for data collection
- Public is asked to **trust** the government
 - Accountability guaranteed by existing cryptographic technology
- Presumed tradeoff between national security and personal privacy
 - No need to abandon personal privacy to ensure national security
- Ideal world: No surveillance
 - Realistic goal: Surveillance with privacy protection

Privacy Principles for Surveillance

Open processes

- Must follow rules and procedures of public law
- Need not disclose targets and details of investigations

Two types of users:

- Targeted users
 - Under suspicion
 - Subject of a warrant
 - Can be known or unknown

- Untargeted users
 - No probable cause
 - Not targets of investigation
 - The vast majority of internet users

Open Privacy Firewall

- Any surveillance or law-enforcement process that obtains or uses private information about untargeted users shall be an open, public, unclassified process.
- II. Any secret surveillance or law-enforcement process shall use only:
 - a. public information, and
 - b. private information about targeted users obtained under authorized warrants via open surveillance processes.

Surveillance Privacy Principles

- Division of trust
 - No one agency can compromise privacy
- Enforced scope limiting
 - Overly broad group of users' data is not captured
- Sealing time and notification
 - Finite, reasonable time before users are notified
- Accountability
 - Statistics presented on use of surveillance

Case Study – High Country Bandits

2010 case – string of bank robberies in Arizona, Colorado

FBI Intersection attack compared 3 cell tower dumps totaling 150,000 users

- 1 number found in all 3 cell dumps led to arrest
- 149,999 innocent users' information acquired

Intersecting Cell-Tower Dumps

- Law enforcement goal: Find *targeted*, *unknown* user whose phone number will appear in the intersection of cell-tower dumps
- Used in: High Country Bandits case, CO-TRAVELER program
 - Same principle for any collection of metadata

Cell Tower A Time *t*₁

- 203-555-4430
- 203-555-3435
- 203-555-2840
- 203-555-7691
- 203-555-1505
- 203-555-9589
- 203-555-7976
- 203-555-9266

Cell Tower B Time t_2

- 203-555-3222
- 203-555-3813
- 203-555-2786
- 203-555-7976
- 203-555-0392
- 203-555-5872
- 203-555-4891
- 203-555-9709

Cell Tower C Time t_3

- 203-555-7928
- 203-555-0599
- 203-555-6445
- 203-555-7511
- 203-555-2277
- 203-555-7976
- 203-555-2840
- 203-555-3222

Intersecting Cell-Tower Dumps

- Law enforcement goal: Find *targeted*, *unknown* user whose phone number will appear in the intersection of cell-tower dumps
- Used in: High Country Bandits case, CO-TRAVELER program
 - Same principle for any collection of metadata

Cell Tower A Time t_1

- 203-555-4430
- 203-555-3435
- 203-555-2840
- 203-555-7691
- 203-555-1505
- 203-555-9589
- 203-555-7976
- 203-555-9266

Cell Tower B Time t_2

- 203-555-3222
- 203-555-3813
- 203-555-2786
- 203-555-7976
- 203-555-0392
- 203-555-5872
- 203-555-4891
- 203-555-9709

Cell Tower C Time t_3

- 203-555-7928
- 203-555-0599
- 203-555-6445
- 203-555-7511
- 203-555-2277
- 203-555-7976
- 203-555-2840
- 203-555-3222

Privacy-Protecting Solution

Based on Vaidya, Clifton (2005)

- A *private set intersection protocol* built to satisfy surveillance privacy principles
- Relies on multiple, independent agencies to execute protocol, providing division of trust, accountability
- Example:
 - Executive agency (FBI, NSA)
 - Judicial agency (warrant-issuing court)
 - Legislative agency (oversight committee established by law)

Private Set Intersection Protocol – Preparation

- Each agency provides encryption key based on commutative, public-key, randomized encryption scheme
 - **Commutative** encryption: $Dec_A(Dec_B(c)) = Dec_B(Dec_A(c))$
- Sources of phone metadata (telecoms) encrypt each data item using all agencies' keys and give encrypted sets to repositories
- When agencies agree on a warrant for intersection, repositories distribute encrypted data sets to agencies
 - Agencies individually select temporary keys for a *commutative*, *deterministic* encryption scheme to be used for this intersection, then thrown away

- An agency starts with data sets under randomized encryption by all agencies' keys
- Each agency strips off its layer of *randomized* encryption, adds a layer of *deterministic* encryption using its temporary key, permutes the data sets, and sends them to next agency

- An agency starts with data sets under randomized encryption by all agencies' keys
- Each agency strips off its layer of *randomized* encryption, adds a layer of *deterministic* encryption using its temporary key, permutes the data sets, and sends them to next agency

- An agency starts with data sets under randomized encryption by all agencies' keys
- Each agency strips off its layer of *randomized* encryption, adds a layer of *deterministic* encryption using its temporary key, permutes the data sets, and sends them to next agency

- An agency starts with data sets under randomized encryption by all agencies' keys
- Each agency strips off its layer of randomized encryption, adds a layer of deterministic encryption using its temporary key, permutes the data sets, and sends them to next agency

- An agency starts with data sets under randomized encryption by all agencies' keys
- Each agency strips off its layer of *randomized* encryption, adds a layer of *deterministic* encryption using its temporary key, permutes the data sets, and sends them to next agency

- When phase I is done, each item has encrypted with *deterministic* encryption using *temporary keys*
- Matching ciphertexts = matching plaintexts = targeted users keep
- Non-matching ciphertexts = untargeted users discard

- When phase I is done, each item has encrypted with *deterministic* encryption using *temporary keys*
- Matching ciphertexts = matching plaintexts = targeted users keep
- Non-matching ciphertexts = untargeted users discard

- When phase I is done, each item has encrypted with deterministic encryption using temporary keys
- Matching ciphertexts = matching plaintexts = targeted users keep
- Non-matching ciphertexts = untargeted users discard

- After phase II, size of intersection revealed
- If intersection cardinality above pre-defined threshold, any agency can stop protocol
 - Prevents accidental compromise of privacy, e.g. "concert scenario"

- After phase II, size of intersection revealed
- If intersection cardinality above pre-defined threshold, any agency can stop protocol
 - Prevents accidental compromise of privacy, e.g. "concert scenario"

- After phase II, size of intersection revealed
- If intersection cardinality above pre-defined threshold, any agency can stop protocol
 - Prevents accidental compromise of privacy, e.g. "concert scenario"

- Once intersection is determined, each agency uses temporary key to remove its layer of encryption
- Set is permuted and passed on as in phase I
- Final results sent to all participants
- Temporary keys securely deleted

- Once intersection is determined, each agency uses temporary key to remove its layer of encryption
- Set is permuted and passed on as in phase I
- Final results sent to all participants
- Temporary keys securely deleted

(203) 555-7976

- Once intersection is determined, each agency uses temporary key to remove its layer of encryption
- Set is permuted and passed on as in phase I
- Final results sent to all participants
- Temporary keys securely deleted

(203) 555-7976

Protocol Satisfies Privacy Principles

- Satisfies principle of Open Process
 - Can openly standardize protocol, crypto without compromising investigative power
- Division of trust
 - No one agency can decrypt or perform intersection
- Enforced scope limiting
 - Any agency can stop protocol if sets or intersection are too large
- Sealing time and notification
 - Implementable by policy all agencies get final data set
- Accountability
 - Because every agency must participate, no agencies can perform attack without other agencies learning and getting statistics

Implementation of Protocol

- We implemented our lawful set intersection protocol in Java
- Tested with three "agencies", run on PlanetLab nodes distributed across the US (CT, TX, CA)
- Proof-of-concept
 - Unoptimized crypto library
 - One single-threaded worker per "agency"

https://github.com/DeDiS/Surveillance

Evaluation of Implementation

 Running time increases linearly with size of data sets

 Roughly 130-150 milliseconds per item of metadata

 High Country Bandits example with 50,000 items per set takes just under 2 hours to complete (43 minutes of CPU time per node)

	Data sent	CPU time	End-to-End
Items	per node (KB)	per node (s)	runtime (s)
10	21	0.6	4.1
25	46	1.3	6.0
50	86	2.6	9.6
75	127	3.8	12.6
100	167	5.0	15.5
250	410	12.4	38.2
500	815	24.7	69.1
750	1220	36.9	103.0
1000	1625	49.3	137.2
2500	4055	123.0	369.9
5000	8106	245.6	724.9
7500	12156	369.4	1034.9
10000	16206	493.8	1402.3
50000	81009	2560.5	6971.2

Table 1: Experimental Results

Conclusions

- Open surveillance processes can and should be designed to meet law enforcement needs while protecting privacy
- Privacy-protecting surveillance is feasible using existing technology
- Directions for future work:
 - testing our protocol with optimized, multi-threaded implementation
 - creating privacy-protecting protocols to replace other forms of surveillance
 - testing with general-purpose Secure Multi-party Computation (SMPC) platforms such as FairPlay, Sharemind to automatically compile surveillance queries into privacy-protecting protocols

Thank you!

