Load Balancing of Heterogeneous Workloads in Memcached Clusters

Jinho Hwang (IBM Research)
Wei Zhang, Timothy Wood, H. Howie Huang (George Washington Univ.)
K.K. Ramakrishnan (Rutgers University)
Background: Memory Caching

- Two orders of magnitude more reads than writes
- Solution: Deploy memcached hosts to handle the read capacity
Memcached at Scale

- Databases are hard to scale… Memcached is easy
 - Facebook has 10,000+ memcached servers

- Partition data and divide key space among all nodes
 - Simple data model. Stupid nodes.

- Web application must track where each object is stored
 - Or use a proxy (load-balancer) like moxi
Scales easily, but loads are imbalanced

- Random placement…
- Skewed popularity distributions…

Load on Wikipedia’s memcached servers
Motivation

- Cache clusters are typically provisioned to support peak load, in terms of request processing capabilities and cache storage size
 - This worst-case provisioning can be very expensive
 - This does not take advantage of dynamic resource allocation and VM provisioning capabilities

- There can be great diversity in both the workloads and types of nodes
 - This makes cluster management difficult

- Solution: large-scale self-managing caches
Contributions

- A high speed memcached load balancer
 - can forward millions of requests per second
- A hot spot detection algorithm
 - uses stream data mining techniques to efficiently determine the hottest keys
- A two-level key mapping system
 - combines consistent hashing with a lookup table to flexibly control the placement and replication level of hot keys
- An automated server management system
 - determines the number of (types of) servers in the caching cluster
Outline

- Background and Motivation
- Workload & Server Heterogeneity
- Memcached Load Balancer Design
- Hotspot Detection Algorithm
- Conclusions
Workload Heterogeneity

- Varied key popularity depending on applications
- Read/write rates, churn rates, costs for cache misses, quality-of-service demands

![Diagram showing hash space and time with popular and unpopular regions.]

Based on Wikipedia 2008 database dump and access trace
Memcached Cluster Grouping

- Traditionally, many applications share memcached servers
- Today, to handle different applications, memcacheds are clustered *manually*

Need smarter way to manage cache clusters
Server Heterogeneity

- Software and hardware can be diverse
- Different memory cache softwares out there
- Many researches prototyped memcached on different HW architectures
 - GP-GPU [Hetherington:ISPASS12]
 - RDMA (remote direct memory access) [Stuedi:ATC12]
 - FPGA [Maysam:Computer_Architecture_Letter13]
 - Intel DPDK [Lim:NSDI14]

Dynamically adapt to workload heterogeneity and server heterogeneity
Outline

- Background and Motivation
- Workload & Server Heterogeneity
- Memcached Load Balancer Design
- Hotspot Detection Algorithm
- Conclusions
Self-Managing Cache Clustering System

- Cache clustering system considers heterogeneous workloads and servers
 - Identifies server capabilities to adjust key space
 - Finds hot items based on the item frequency to handle them differently
- Dynamically increase/decrease the number of memcached servers
- Uses two-level key mapping system
 - Consistent hashing: *applies to warm/cold items (LRU)*
 - Forward table: *applies to hot items*
Automated Load-Balancer Architecture

- Use UDP protocol to redirect the packets directly from memcached servers to clients (lower load in load-balancer)
- **Hot Spot Detector** runs a streaming algorithm to find hot items
- **Server Manager** manages the memcached servers
- **Key Replicator** manages the key replication
- **Key Director** manages forwarding table and consistent hashing ring
Outline

- Background and Motivation
- Workload & Server Heterogeneity
- Memcached Load Balancer Design
- Hotspot Detection Algorithm
- Conclusions
Lossy Counting based Hot Spot Detection

- Lossy counting algorithm is a one-pass deterministic streaming algorithm with user defined parameters
 - Support threshold s
 - Given the stream length N, return at least sN
 - Error rate ε ($\varepsilon << s$)
 - No item with true frequency $< (s - \varepsilon)N$ is returned
 - (no false negative)
 - Memory size is not monotonically increasing
Find Hot Items and Groups of Hot Items

- Estimated frequency (i.e., request rate) seen by the top keys
- The goal is two-fold
 - Find hot items
 - Find groups of items that can balance the loads across servers
Adaptively Sizing Number of Hot Items

- Given the number of servers, and found hot spot groups, the load-balancer decides to increase/decrease the number of keys.
- In a scheduling window, we adjust the support parameter s to adjust the number of hot items.

![Graph showing number of hot items vs. stream length](image)
Conclusion

- **Summary**
 - Self-managing cache clustering system
 - Workload and server heterogeneity
 - Adaptive hot item groups
 - Number of keys and groups based on servers
 - High speed load-balancer (~10 million requests per sec / single core)
 - Leverage high-performing NICs and processors

- **Ongoing work**
 - Optimize the number of servers and replicas of hot items
 - (cloud environment)