
Patronus: High-Performance and Protective
Remote Memory

BinYan, Youyou Lu, Qing Wang, Minhui Xie, Jiwu Shu

Tsinghua University

2

Remote Memory

Remote memory architecture
v Physically separate CPU and memory into network-attached components

Compute Nodes
(CNs)

Memory Nodes
(MNs)

many CPU cores,
small local DRAM

large DRAM,
several wimpy cores

2

Remote Memory

Remote memory architecture
v Physically separate CPU and memory into network-attached components

Compute Nodes
(CNs)

Memory Nodes
(MNs)

many CPU cores,
small local DRAM

large DRAM,
several wimpy cores

RDMA network
Low latency & high bandwidth
Bypass remote CPUs

2

Remote Memory

Remote memory architecture
v Physically separate CPU and memory into network-attached components

Compute Nodes
(CNs)

Memory Nodes
(MNs)

many CPU cores,
small local DRAM

large DRAM,
several wimpy cores

RDMA network
Low latency & high bandwidth
Bypass remote CPUs

RDMA-enabled remote memory is widely deployed
to improve memory utilization

However, protection for remote memory is not explored

4

Remote Memory

efficient remote indexes

[ATC’21,SIGMOD’22,HotOS’19]

Many efforts to make remote memory practical on multiple fronts

easy-to-use

programming models

[OSDI’20,ATC’18,SoCC’17]

popular applications

and more

[FAST22, OSDI’18, ATC’15]

5

Necessity: Protection for Remote Memory

corrupt
data!

privacy
breaches!

client

Example I buggy/malicious clients
(access illegal address)

Unprotected RM fails to avoid application anomalies

read(0x00-0xff)write(0x00-0xff)
(out-of-bound) (unregulated)

5

Necessity: Protection for Remote Memory

corrupt
data!

privacy
breaches!

client

get garbage
data !

Example I buggy/malicious clients
(access illegal address)

Example II memory management race
(access at illegal time)

Unprotected RM fails to avoid application anomalies

read(0x00-0xff) free(0xa0) read(0xa0)write(0x00-0xff)
(out-of-bound) (unregulated) (concurrent)

5

Necessity: Protection for Remote Memory

corrupt
data!

privacy
breaches!

client

get garbage
data !

Example I buggy/malicious clients
(access illegal address)

Example II memory management race
(access at illegal time)

Unprotected RM fails to avoid application anomalies

read(0x00-0xff) free(0xa0) read(0xa0)write(0x00-0xff)

RM protection is necessary
especially for workloads with shared access patterns

(out-of-bound) (unregulated) (concurrent)

6

Difficulty: Protection + Performance (I)

It is difficult to achieve high-performance protection on the common path
Reason 1: CPUs are weak on memory nodes
Reason 2: Existing protection mechanisms are expensive

6

Difficulty: Protection + Performance (I)

client

Memory Region (MR)

RDMA op

It is difficult to achieve high-performance protection on the common path

Remote Memory

Reason 1: CPUs are weak on memory nodes
Reason 2: Existing protection mechanisms are expensive

Queue Pair
(QP)

a

b

6

Difficulty: Protection + Performance (I)

client

Memory Region (MR)

RDMA op

It is difficult to achieve high-performance protection on the common path

RDMA op

QP-base

MR-base

2 us

1ms (for 256 MB)

100 us

X50

X10

70Mops/s for ConnectX-5 RNIC

Operation Latency

Remote Memory

Reason 1: CPUs are weak on memory nodes
Reason 2: Existing protection mechanisms are expensive

Queue Pair
(QP)

a

b

a

b

6

Difficulty: Protection + Performance (I)

client

Memory Region (MR)

RDMA op

Existing mechanisms are 50X-500X slower than
RDMA data path.

It is difficult to achieve high-performance protection on the common path

RDMA op

QP-base

MR-base

2 us

1ms (for 256 MB)

100 us

X50

X10

70Mops/s for ConnectX-5 RNIC

Operation Latency

Existing applications (FaRM [NSDI’14], Octopus
[ATC’17]) have to use 2GB coarse-grained MR,
leaving RM no protection.

Remote Memory

Reason 1: CPUs are weak on memory nodes
Reason 2: Existing protection mechanisms are expensive

Queue Pair
(QP)

a

b

a

b

Difficulty: Protection + Robustness (II)

It is difficult to remain robust on the failure path:

pending infinitely

Exception I Client failures

Crashed client

Client failures impact system progress

owning
exclusive permission…

Another client

Acquire Permission (also at 0xa0)(at 0xa0)

Difficulty: Protection + Robustness (II)

It is difficult to remain robust on the failure path:

pending infinitely

Exception I Client failures Exception II QP failures

no ack… (more than 1ms)

Crashed QP

Crashed client

Client failures impact system progress QP failures interrupt application execution

owning
exclusive permission…

Another client

Acquire Permission (also at 0xa0)

RDMA op

(at 0xa0)

8

Goal - Protective System

Fast protection management

on par with data path

RM systems are performance-critical

Client failures impact system
progress

QP failures interrupt application
execution

React fast to client failures

Retain performance under
QP failures

8

Goal - Protective System

Fast protection management

on par with data path

RM systems are performance-critical

Client failures impact system
progress

QP failures interrupt application
execution

React fast to client failures

Retain performance under
QP failures

Patronus: a protective RM system that is

high-performance and robust under all situations

9

Outline

v Background & Motivation

v Patronus – High-Performance Protective Remote Memory

v Results

v Conclusion

10

Patronus Overview

MNs

RDMA network

CNs

remote memory

Permission Management Memory Management

data
access
(one-sided)

permission
requests
(RPC)

Address Perm

<0xa0,8> R+W

<0xd0,64> expired
requests

10

Patronus Overview

MNs

RDMA network

CNs

remote memory

Permission Management Memory Management

data
access
(one-sided)

permission
requests
(RPC)

allocate(64) /
acquire(0xb0,64)

Perm

Permission starts

Address Perm

<0xa0,8> R+W

<0xd0,64> expired
requests

10

Patronus Overview

MNs

RDMA network

CNs

remote memory

Permission Management Memory Management

data
access
(one-sided)

permission
requests
(RPC)

ACKallocate(64) /
acquire(0xb0,64)

Perm

Permission starts Data access

read/write(Perm,0xa0,8)

ACK
...

Address Perm

<0xa0,8> R+W

<0xd0,64> expired
requests

10

Patronus Overview

MNs

RDMA network

CNs

remote memory

Permission Management Memory Management

data
access
(one-sided)

permission
requests
(RPC)

ACKallocate(64) /
acquire(0xb0,64)

Perm

Permission starts Data access

read/write(Perm,0xa0,8)

with check

ACK
...

Address Perm

<0xa0,8> R+W

<0xd0,64> expired

NAK

read/write(Perm,0xff,8)

(out of bound)

requests

10

Patronus Overview

MNs

RDMA network

CNs

remote memory

Permission Management Memory Management

data
access
(one-sided)

permission
requests
(RPC)

ACK revoke(Perm)

ACK

allocate(64) /
acquire(0xb0,64)

Perm

Permission starts Data access Permission ends

read/write(Perm,0xa0,8)

with check

ACK
...

Address Perm

<0xa0,8> R+W

<0xd0,64> expired

NAK

read/write(Perm,0xff,8)

(out of bound)

requests

12

Opportunity – Memory Window (MW)

Memory Window: an advanced & light-weight protection mechanism
v Patronus leverages MWs for fast permission management.

12

Opportunity – Memory Window (MW)

Memory Window: an advanced & light-weight protection mechanism
v Patronus leverages MWs for fast permission management.

RDMA op

QP op

MR op

2 us

1ms

100 us

MW op 1.1 us same-level latency

Operation Latency

12

Opportunity – Memory Window (MW)

Memory Window: an advanced & light-weight protection mechanism
v Patronus leverages MWs for fast permission management.

RDMA op

QP op

MR op

2 us

1ms

100 us

MW op 1.1 us same-level latency

Operation Latency

Action MW Effect

Permission starts bind ->

Permission ends unbind

(rebind = unbind + bind)

12

Opportunity – Memory Window (MW)

Memory Window: an advanced & light-weight protection mechanism
v Patronus leverages MWs for fast permission management.

RDMA op

QP op

MR op

2 us

1ms

100 us

MW op 1.1 us same-level latency

Operation Latency

Action MW Effect

Permission starts bind ->

Permission ends unbind

(rebind = unbind + bind)NOT ENOUGH

12

Opportunity – Memory Window (MW)

Memory Window: an advanced & light-weight protection mechanism
v Patronus leverages MWs for fast permission management.

RDMA op

QP op

MR op

2 us

1ms

100 us

MW op 1.1 us same-level latency

Operation Latency

clients memory nodes

MW

Action MW Effect

Permission starts bind ->

Permission ends unbind

(rebind = unbind + bind)NOT ENOUGH

12

Opportunity – Memory Window (MW)

Memory Window: an advanced & light-weight protection mechanism
v Patronus leverages MWs for fast permission management.

RDMA op

QP op

MR op

2 us

1ms

100 us

MW op 1.1 us same-level latency

Operation Latency

clients memory nodes

MW

Weak CPUs?

Action MW Effect

Permission starts bind ->

Permission ends unbind

(rebind = unbind + bind)NOT ENOUGH

12

Opportunity – Memory Window (MW)

Memory Window: an advanced & light-weight protection mechanism
v Patronus leverages MWs for fast permission management.

RDMA op

QP op

MR op

2 us

1ms

100 us

MW op 1.1 us same-level latency

Operation Latency

clients memory nodes

MWClient failure?

Weak CPUs?

Action MW Effect

Permission starts bind ->

Permission ends unbind

(rebind = unbind + bind)NOT ENOUGH

12

Opportunity – Memory Window (MW)

Memory Window: an advanced & light-weight protection mechanism
v Patronus leverages MWs for fast permission management.

RDMA op

QP op

MR op

2 us

1ms

100 us

MW op 1.1 us same-level latency

Operation Latency

clients memory nodes

QP failure?

MWClient failure?

Weak CPUs?

Action MW Effect

Permission starts bind ->

Permission ends unbind

(rebind = unbind + bind)NOT ENOUGH

Technique (1) – MW Operation Reduction

Same semantics can be achieved with fewer operations

Bind 0x10
Unbind 0x80

alloc MW

free MW

Rebind 0x80->0x10
Unbind 0x80

bind + unbind = 2 op
rebind = 1 op

Hand over
MWs!

v MW handover
- Observation: binding and unbinding ops co-exist
- Bind op + unbind op => rebind op
- Hand over MWs between requests
- Result: reduce half of MW ops

v Exploit locality
- Observation: space and time locality
- Multiple bind ops (w/ locality) => one bind op
- Result: reduce binding MW ops

Technique (1) – MW Operation Reduction

Same semantics can be achieved with fewer operations

Bind 0x10
Unbind 0x80

alloc MW

free MW

Rebind 0x80->0x10
Unbind 0x80

bind + unbind = 2 op
rebind = 1 op

Hand over
MWs!

v MW handover
- Observation: binding and unbinding ops co-exist
- Bind op + unbind op => rebind op
- Hand over MWs between requests
- Result: reduce half of MW ops

v Exploit locality
- Observation: space and time locality
- Multiple bind ops (w/ locality) => one bind op
- Result: reduce binding MW ops

bind(0xa0)
bind(0xb0)
bind(0xc0)

n bind = n op
1 bind = 1 op

(Time locality: client re-uses permission)
(Space locality: combine MWs)

X 1

14

Technique (2) – Lease for Client Failures

Memory Node

Remote Memory

Use leases to handle client failures

Client

14

Technique (2) – Lease for Client Failures

Memory Node

Remote Memory

lease time

Polling

Use leases to handle client failures

Client

.

v Equip MWs with automatic reclamation
v Memory nodes poll for expiration periodically ()

14

Technique (2) – Lease for Client Failures

Memory Node

Remote Memory

lease time

Polling

Use leases to handle client failures

Client

.

v Equip MWs with automatic reclamation
v Memory nodes poll for expiration periodically ()

Offloads lease extension overhead to compute nodes

14

Technique (2) – Lease for Client Failures

Client-collaborated lease extension
Memory Node

Remote Memory

lease time

Polling

.

v Enabler: MWs are byte-granularity to expose variables
v Expose the lease_time variable () to clients
v Clients extend permission via RDMA_CAS ()
v Result: Extension only costs one in-bound RDMA op

Use leases to handle client failures

Client
CAS with

.

v Equip MWs with automatic reclamation
v Memory nodes poll for expiration periodically ()

MW

Offloads lease extension overhead to compute nodes

15

Technique (3) – Over-Provisioning for QP failures

.

vOn QP failures: promote a healthy QP as substitution
v Enabler: MWs can remain valid across QPs => previous permission still works
v Result: low downtime under QP failures

Over-provision QPs to hide interruption from QP failures

Compute
Nodes

Memory
Nodes

over-provisioned

15

Technique (3) – Over-Provisioning for QP failures

.

vOn QP failures: promote a healthy QP as substitution
v Enabler: MWs can remain valid across QPs => previous permission still works
v Result: low downtime under QP failures

Over-provision QPs to hide interruption from QP failures

Compute
Nodes

Memory
Nodes

Promote!

over-provisioned

15

Technique (3) – Over-Provisioning for QP failures

.

vOn QP failures: promote a healthy QP as substitution
v Enabler: MWs can remain valid across QPs => previous permission still works
v Result: low downtime under QP failures

Over-provision QPs to hide interruption from QP failures

Compute
Nodes

Memory
Nodes

Just a few are enough!Promote!

over-provisioned

15

Technique (3) – Over-Provisioning for QP failures

.

vOn QP failures: promote a healthy QP as substitution
vEnabler: MWs can remain valid across QPs => previous permission still works
v Result: low downtime under QP failures

Over-provision QPs to hide interruption from QP failures

Compute
Nodes

Memory
Nodes

Just a few are enough!Promote!Still valid!

over-provisioned

15

Technique (3) – Over-Provisioning for QP failures

.

vOn QP failures: promote a healthy QP as substitution
vEnabler: MWs can remain valid across QPs => previous permission still works
vResult: low downtime under QP failures

Over-provision QPs to hide interruption from QP failures

Over-provisioning improves robustness

Compute
Nodes

Memory
Nodes

Just a few are enough!Promote!Still valid!

over-provisioned

16

Outline

v Background & Motivation

v Patronus – High-Performance Protective Remote Memory

v Results

v Conclusion

17

Experimental Setup

Hardware Platform

CPU Xeon Gold 6240M CPUs, 32 cores per node

DRAM 186GB DDR4

NIC Mellanox MT27800 ConnectX-5 Family

Cluster
v 3 Compute node (no cache)
v 1 Memory node (<= 4 CPU cores)

17

Experimental Setup

Hardware Platform

CPU Xeon Gold 6240M CPUs, 32 cores per node

DRAM 186GB DDR4

NIC Mellanox MT27800 ConnectX-5 Family

Cluster
v 3 Compute node (no cache)
v 1 Memory node (<= 4 CPU cores)

Evaluated Cases

v Common path: 2 one-sided data structures and 2 function-as-a-service workloads.
v Exception path: client failures and QP failures.

Vanilla unprotected impl
Use Patronus for permission

Use MR for permission
Use RPC in data path

18

Evaluation (1): Overall Performance

RACE
Hashing

Concurrent
Queue

T
hr
ou
gh
pu
t
(M
op
s)

T
hr
ou
gh
pu
t
(M
op
s)

Zipfian 0.99
KV = 4KB

Function
as a Service

Vanilla unprotected impl
Use Patronus for permission

Use MR for permission
Use RPC in data path

18

Evaluation (1): Overall Performance

RACE
Hashing

Concurrent
Queue

T
hr
ou
gh
pu
t
(M
op
s)

T
hr
ou
gh
pu
t
(M
op
s)

Zipfian 0.99
KV = 4KB

Function
as a Service

X 5.2 better

Vanilla unprotected impl
Use Patronus for permission

Use MR for permission
Use RPC in data path

18

Evaluation (1): Overall Performance

RACE
Hashing

Concurrent
Queue

T
hr
ou
gh
pu
t
(M
op
s)

T
hr
ou
gh
pu
t
(M
op
s)

Zipfian 0.99
KV = 4KB

Function
as a Service

Patronus performs up to X5.2 better than the competitors and

has <= 28% overhead than vanilla implementation

<= 28% X 5.2 better

19

Evaluation (2): Failure Handling

Handling client failures.

v Vanilla: not handling client failures

v Patronus: resumes progress after 80 epochs.

crash

detect
recovered

Lo
ad

 F
ac

to
r

0%
20%
40%
60%
80%

100%

Epoch (0.1 ms)
0 200 400 600 800

19

Evaluation (2): Failure Handling

Handling client failures.

v Vanilla: not handling client failures

v Patronus: resumes progress after 80 epochs.

Patronus is robust to handle client failures and QP failures quickly

Handling QP failures.

v Trigger out-of-bound access manually

crash

detect
recovered

Lo
ad

 F
ac

to
r

0%
20%
40%
60%
80%

100%

Epoch (0.1 ms)
0 200 400 600 800

Category Vanilla Patronus

Promote QP - 78 us

Notify QP Failure 8 us -

Recover QP 1004 us -

Summary 1012 us 78 us (8%)

20

Conclusion

vWe propose Patronus, a high-performance protective remote memory
system for RM protection.

vThree techniques for performance & robustness: MW operations reduction,
client-collaborated lease, and QP over-provisioning.

v Patronus takes less than 28% overhead and performs at most x5.2 than the
competitors in various real-world workloads.

v More analysis and evaluation results in the paper.

Thanks
Q&A

21

yanb20@mails.tsinghua.edu.cn

Patronus – High-Performance and Protective
Remote Memory

BinYan, Youyou Lu, Qing Wang, Minhui Xie, Jiwu Shu

