SHADE: Enable Fundamental Cacheability for Distributed Deep Learning Training

Redwan Ibne Seraj Khan¹, Ahmad Hossein Yazdani¹, Yuqi Fu², Arnab K. Paul³, Bo Ji¹, Xun Jian¹, Yue Cheng², Ali R. Butt¹

Virginia Tech¹, University of Virginia², BITS Pilani Goa³
Deep Learning (DL) is ubiquitous

DL is getting used in everywhere to make life easier. Market expected to reach 12 billion dollars by 2025! Exponential growth ~19% annually

Challenge: Matching DL Needs with System Resources
Challenge: Matching DL Needs with System Resources

Deep Learning (DL)

compute-intensive

data-intensive
Challenge: Matching DL Needs with System Resources

- **compute-intensive**
- **data-intensive**

- Deep Learning (DL)
Data Storage Impacts the Performance of DL Training

Remote storage

Training Node

model

Training Node

GPU
Data Storage Impacts the Performance of DL Training

Remote storage

Training Node

Predictions

Training Node
Data Storage Impacts the Performance of DL Training

Loss function = predicted value - actual value
I/O is the Bottleneck in Distributed DL Training

~85-90% time spent in I/O

Training Node

Remote storage

Training Node
I/O is the Bottleneck in Distributed DL Training

What can be done to solve this I/O bottleneck?

~85-90% time spent in I/O
A Possible Solution - Local Storage

Store the entire dataset locally?

Remote storage

~85-90% I/O time
Problems with Storing Data Locally for DL Training

1. GPU VMs can lead to loss of local storage state
Problems with Storing Data Locally for DL Training

1. GPU VMs can lead to loss of local storage state
2. RAM size is very small
Can We Cache for DL Training?

Goal: Improve performance using a small working set size (WSS)
Can We Cache for DL Training?

Goal: Improve performance using a small working set size (WSS)

Caching DL workloads is non-trivial
- Data samples are fetched randomly
- All samples are accessed every epoch
Can We Cache for DL Training?

Goal: Improve performance using a small working set size (WSS).
Caching DL workloads is non-trivial.
- Data samples are fetched randomly
- All samples are accessed every epoch

Which samples should we cache?
Not all samples are equal1,2. Some are more important than others as they contribute more towards increasing the accuracy of a DL model.

Inequality Among Sample Contribution

Hard-to-learn samples are the most important
Example: FEMNIST dataset

Not Important (easier-to-learn) Important (harder-to-learn)
Repetitive Access Patterns are Amenable to Caching

Observations

~26% samples accessed more than once
~10% samples accessed more than three times
Key Insight of SHADE

DL Training can treat different samples differently. If we can predict the I/O accesses, we can cache the samples to fundamentally improve the I/O efficiency.
Making Important Samples Cacheable is Challenging

1. Identify per-sample importance
2. Avoid making the model biased
3. Track importance scores
Challenge 1: Coarse-grained Importance Scores

Importance scores are generally coarse-grained and thus inaccurate.

Minibatch samples: (4, 5, 6)
Importance Score: 0.4

Score(4) = Score(5) = Score(6) → Not accurate

Individual samples have their own contribution towards improving the accuracy of the model.
How can we compare the importance across minibatches?

Challenge 1: Coarse-grained Importance Scores

Minibatch samples

B1 (4, 5, 6) → (0.3, 0.5, 0.4)

B2 (7, 8, 9) → (0.6, 0.9, 0.8)

Most important (8, 9, 7, 5, 6, 4) → Least important

Relative comparison across minibatches become difficult.
Challenge 2: Biased Models

Minibatch samples

\[(6, 8, 8, 8, 9)\]

Importance Scores

\[(0.5, 0.8, 0.8, 0.8, 0.7)\]

Let’s use repeated samples to get more hits!
Challenge 2: Biased Models

Let’s use repeated samples to get more hits!

But, wait a sec!

Would training on repeated samples lead to biased results?
Challenge 3: Constant Change of Importance Scores

Importance scores are dynamic

Minibatch samples

(6, 7, 8, 9)

Importance Scores

(0.6, 0.8, 0.9, 0.6)

Current score

Let’s put 7 and 8 in cache!
Challenge 3: Constant Change of Importance Scores

Importance scores are dynamic

Minibatch samples

(6, 7, 8, 9)

Current score

Importance Scores

(0.6, 0.8, 0.9, 0.6)

Future score

(0.5, 0.3, 0.4, 0.6)

Let’s put 7 and 8 in cache!

If cache is not updated, most important samples will not be in cache.
Making Important Samples Amenable to Caching

- Loss Decomposition
- Rank-based Score
- Priority-based Adaptive Sampling (PADS)
- Adaptive Priority-aware Prediction (APP) Cache

SHADE
Technique 1: Loss Decomposition

Tackling coarse-grained nature of importance scores

Minibatch samples: (4,5,6)

Importance Scores:
- Batch-based loss: 0.4
- Per-sample loss: (0.3, 0.5, 0.4)

Use coarse-grained loss for training, fine-grained loss for importance sampling
Technique 2: Rank-based Importance Score

Adapting importance scores for priority-based caching

Minibatch samples	Raw scores	Ranked scores
B1 (4,5,6) | (0.3, 0.5, 0.4) | (0, 2, 1)
B2 (7,8,9) | (0.6, 0.9, 0.8) | (0, 2, 1)

Rank fine-grained losses to detect relative importance.
Technique 3: Priority-based Adaptive Sampling (PADS)

Adapting sampling based on loss/accuracy change to avoid bias

Samples

4, 7, 3, 5, 3, 5, 2, 2, 1, 10

Create samples list with repetitions based on importance.
Higher repetitions → Higher importance

3, 3, 5, 5, 2

Send optimal list for training and caching
Cache → (3,5)
Hits → (3,3,5,5); Hit rate → 80%

Monitor the loss + accuracy in real time

Increase hit rate at will while keeping the accuracy improvement in check
Technique 4: Adaptive Priority-aware Prediction (APP)

Keep the most important samples in cache

Priority Queue (PQ) → importance of currently cached samples
Ghost Cache → importance of all trained samples.

Compare (importance of cached sample, importance of incoming sample)

Get from PQ

Get from ghost cache

Compare importance scores to keep most important samples in cache
SHADE Architecture

SHADE Control Layer
- Finding fine-grained importance, ranking them, and sampling
SHADE Architecture

SHADE Control Layer
- Finds fine-grained importance, ranks, and samples data

SHADE Data Layer
- Stores and retrieves from cache
- Updates the cache
SHADE Implementation

ShadeDataset
● Contains *APP* Cache logic
● Uses Redis as in-memory pooled cache

ShadeSampler
● Communicates with training processes using APIs
● Contains *PADS* logic

SHADE Training Process
● Contains Loss Decomposition + Ranking Logic

SHADE Analysis Framework
● Built-in framework to facilitate experimentation
SHADE Feature: Ease of Deployment

Default PyTorch

```python
train_dataset = datasets.ImageFolder(
    train_directory,
    transform_function)
val_dataset = datasets.ImageFolder(
    val_directory,
    transform_function)
train_sampler = DistributedSampler(train_dataset)
Train()
Validate()
```

SHADE

```python
train_dataset = ShadeDataset(
    train_directory,
    transform_function,...)
val_dataset = ShadeValDataset(
    val_directory,
    transform_function)
train_sampler = ShadeSampler(train_dataset)
Train()
Validate()
```
Evaluation Setup

Cluster
- 4 nodes each having 2 P100 GPUs
- HDD-based NFS server as a remote storage

Datasets
- ImageNet-1K
- CIFAR-10

Models
- AlexNet, ResNet-18, ResNet-50, VggNet

Baseline
- LRU incorporated PyTorch Distributed Training
Evaluation Objectives

1. Accuracy vs. Time
2. Throughput
3. Hit Ratio
4. Minibatch Load Time
Evaluation Objectives

1. Accuracy vs. Time
2. Hit Rates
3. Throughput
4. Minibatch Load Time
Accuracy vs. Time

ResNet-50 model + ImageNet Dataset
Faster Accuracy Convergence

ResNet-50 model + ImageNet Dataset
Accuracy vs. Time

AlexNet model + CIFAR-10 Dataset
Faster Accuracy Convergence

AlexNet model + CIFAR-10 Dataset
Faster Accuracy Convergence

SHADE can quickly train a model and improve the accuracy using a limited cache space.

AlexNet model + CIFAR-10 Dataset
Impact on Throughput

AlexNet model + CIFAR-10 Dataset
Higher Throughput

AlexNet model + CIFAR-10 Dataset

2.3x
SHADE can process images quickly using a small cache, leading to a decrease in overall training time.
Impact on Hit Ratio

20% WSS of CIFAR-10 + ResNet-18

Higher Exploitation of Data Locality

20% WSS of CIFAR-10 + ResNet-18
Higher Exploitation of Data Locality

SHADE can exploit the data locality of samples and make the best utilization of a small cache, i.e., it enables fundamental cacheability of DL workloads.

20% WSS of CIFAR-10 + ResNet-18

Summary and Conclusion

SHADE is a caching system for DL workloads.

- Provides the ability to train more on hard-to-learn samples (Ranking fine-grained importance + \textit{PADS policy})
- Retains the most important samples in cache (\textit{APP Cache})
- Increases hit rate in cache leading to faster accuracy convergence (~3.3x) and increased throughput (~2.3x)
- Enables fundamental cacheability of DL Training
SHADE is available at:
https://github.com/R-I-S-Khan/SHADE

Contact:
Redwan Ibne Seraj Khan
redwan@vt.edu
My webpage:
https://sites.google.com/vt.edu/redwanibneserajkhan/home

Distributed Systems and Storage Laboratory @ Virginia Tech
https://dssl.cs.vt.edu