CheckFreq
Frequent, Fine-Grained DNN Checkpointing

Jayashree Mohan, Amar Phanishayee, Vijay Chidambaram
Deep Neural Networks (DNNs)

- Widely used for a variety of tasks

- Image Classification
 - Cat
 - Dog

- Language Translation

- Object detection
 - Duck
 - Dog

- Text To Speech
DNN Training

Epoch = One complete pass over the dataset

DNN training is compute-intensive and time-consuming!
DNN Checkpointing

Any interruption can wipe out the model parameters learned so far in memory, restarting this expensive process!
DNN Checkpointing

• Learned model parameters are written to persistent storage every so often during training for fault-tolerance:
 • The VMs may migrate, expire, or crash (e.g., spot instances), jobs may migrate (e.g., shared GPU clusters)
State of DNN Checkpointing Today

• Synchronous checkpoints => Large checkpoint stalls

• Manual checkpointing frequency => Typically performed at epoch boundaries

• But epoch times are increasing due to higher computational complexity of models and increasing dataset sizes

• Frequent interruptions : for e.g. preemptions in low-cost spot VMs

Need fine-grained, iteration-level checkpointing
Challenges for fine-grained checkpointing

Checkpointing frequency
How often to checkpoint?

Checkpoint stalls
How to minimize the cost of a checkpoint?

Data invariant
How to resume correctly from a checkpoint?

- Every epoch processes all the items in the dataset exactly once, in a random shuffled order
- Must hold when training resumes after an interruption in the middle of an epoch
Challenges for fine-grained checkpointing

Checkpointing frequency
How often to checkpoint?

Checkpoint stalls
How to minimize the cost of a checkpoint?

Data invariant
How to resume correctly from a checkpoint?

Our work addresses these challenges to provide an automated, frequent checkpointing framework for DNN training.
CheckFreq

• Fine-grained, automated checkpointing framework for DNN training
• Strikes a balance between low overhead and high frequency of checkpointing => new checkpointing policy and mechanism
• Exploits the DNN computational model to perform pipelined in-memory snapshots, GPU-based snapshots, and adaptive tuning of checkpointing frequency
• CheckFreq reduces the recovery time for popular DNNs from hours to seconds during job interruptions

Source code: https://github.com/msr-fiddle/CheckFreq
Outline

• Background and Motivation

• **CheckFreq – Design**
 • Checkpointing Mechanism
 • Checkpointing Policy

• Evaluation
CheckFreq Design

Mechanism

- How to perform correct, low-cost checkpointing?
 - 2-phase DNN-aware checkpointing
 - Low checkpoint stalls
 - Resumable data iterator
 - Maintain data invariant

Policy

- When to checkpoint?
 - Systematic online profiling
 - Initial checkpointing frequency
 - Adaptive rate tuning
 - Manages interference from other jobs
CheckFreq Design

Mechanism
- How to perform correct, low-cost checkpointing?
 - 2-phase DNN-aware checkpointing
 - Low checkpoint stalls
 - Resumable data iterator
 - Maintain data invariant

Policy
- When to checkpoint?
 - Systematic online profiling
 - Initial checkpointing frequency
 - Adaptive rate tuning
 - Manages interference from other jobs

Recovery Guarantees
Outline

• Background and Motivation
• CheckFreq – Design
 • Checkpointing Mechanism
 • Checkpointing Policy
• Evaluation
2-Phase Checkpointing

• Synchronous checkpointing introduces **checkpoint stalls** => **Runtime overhead**

• Low-cost checkpointing mechanism that is split into a **pipelined** snapshot() and persist() phase

 Snapshot() : Serialize and copy into a user-space buffer

 Persist() : Write out the serialized contents to disk
Example

• Consider a policy that checkpoints every three iterations.
Example

Training (GPU) 1 1 1
Checkpoint (CPU)

(a) Baseline: Synchronous checkpointing
Example

Training (GPU) 1 1 1
Checkpoint (CPU) 1

Training (GPU) 1 1 1
Checkpoint (CPU)

(a) Baseline: Synchronous checkpointing

(b) Only persist() pipelining

Example

Training (GPU) 1 1 1
Checkpoint (CPU) 1

Training (GPU) 1 1 1
Checkpoint (CPU)

(a) Baseline: Synchronous checkpointing

(b) Only persist() pipelining

Example

Training (GPU) 1 1 1
Checkpoint (CPU) 1

Training (GPU) 1 1 1
Checkpoint (CPU)

(a) Baseline: Synchronous checkpointing

(b) Only persist() pipelining

Example

Training (GPU) 1 1 1
Checkpoint (CPU) 1

Training (GPU) 1 1 1
Checkpoint (CPU)

(a) Baseline: Synchronous checkpointing

(b) Only persist() pipelining
Example

(a) Baseline: Synchronous checkpointing

(b) Only persist() pipelining
Example

(a) Baseline: Synchronous checkpointing

(b) Only persist() pipelining
Example

(a) Baseline: Synchronous checkpointing

(b) Only persist() pipelining

(c) Snapshot() and persist() pipelining

Legend:
- Forward pass
- Backward pass
- Disk IO
- Weight update
- Snapshotting
- Checkpoint stall
Example

(a) Baseline: Synchronous checkpointing

(b) Only persist() pipelining

(c) Snapshot() and persist() pipelining
Example

(a) Baseline: Synchronous checkpointing

(b) Only persist() pipelining

(c) Snapshot() and persist() pipelining

Legend:
- **Forward pass**
- **Snapshotting**
- **Backward pass**
- **Disk IO**
- **Weight update**
- **Checkpoint stall**
GPU-optimized Snapshots

• Cost of serialization and snapshot() is upto 10x lower when done on the GPU
• To further reduce the checkpoint cost, CheckFreq snapshots on the GPU, and asynchronously writes it to CPU memory if it profiles spare memory on the GPU
• If GPU memory is fully utilized, it falls back to pipelined, CPU-side snapshots
Outline

• Background and Motivation
• CheckFreq – Design
 • Checkpointing Mechanism
 • Checkpointing Policy
• Evaluation
Checkpointing policy

• Determines when to initiate a checkpoint
• Checkpoints every k iterations, such that
 • the cost of one checkpoint can be amortized over k iterations
 • Runtime overhead introduced due to checkpointing is within a small user-given percentage of the actual compute time (say 5%)
Systematic Online Profiling

- CheckFreq’s data iterator automatically profiles several iteration-level and checkpoint-specific metrics:
 - Iteration time
 - Time for weight update
 - Time for GPU snapshot()
 - Time for CPU snapshot()
 - Available disk throughput
 - Checkpoint size
 - Peak GPU memory util
 - Total GPU memory

Algorithmically determines the checkpointing frequency such that:
- Overhead due to checkpoint stalls is within the user-given limit
Outline

• Background and Motivation
• CheckFreq – Design
 • Checkpointing Mechanism
 • Checkpointing Policy
• Evaluation
Experimental Setup

• Checkfreq is integrated with PyTorch
 • Uses the state-of-the-art NVIDIA DALI data loading library to support resumability

• Experiments are performed on two different servers from an internal GPU cluster at Microsoft
 1. Conf-Volta: Server with eight V100 GPUs (32GiB), with a SSD
 2. Conf-Pascal: Server with eight 1080Ti GPUs (11GiB), with a HDD
Models and Experiments

• We evaluate CheckFreq on 7 different DNNs:
 • ResNet18, ResNet50, ResNext101, DenseNet121, VGG16, InceptionV3 on Imagenet-1k
 • Bert-Large pretraining on Wikipedia & BookCorpus dataset

• Experiments to evaluate:
 - Accuracy implications of data invariant
 - Checkpoint stalls
 - Recovery Time
 - Breakdown of benefits due to pipelining
 - Adaptive frequency tuning
 - End-to-end training with interruptions
Models and Experiments

• We evaluate CheckFreq on 7 different DNNs:
 • ResNet18, ResNet50, ResNext101, DenseNet121, VGG16, InceptionV3 on Imagenet-1k
 • Bert-Large pretraining on Wikipedia & BookCorpus dataset

• Experiments to evaluate:
 - Accuracy implications of data invariant
 - Checkpoint stalls
 - Recovery Time
 - Breakdown of benefits due to pipelining
 - Adaptive frequency tuning
 - End-to-end training with interruptions
CheckFreq reduces checkpoint stalls

- Train VGG16 for 300 iterations on Conf-Volta
- Checkpointing mechanisms:
 - Synchronous
 - Persist() pipelining only
 - CheckFreq - Persist() and snapshot() pipelining

- Checkpointing frequency: 15 iterations
CheckFreq reduces checkpoint stalls
CheckFreq reduces checkpoint stalls
CheckFreq reduces checkpoint stalls

• Performing asynchronous IO reduces checkpoint cost by 2x but still results in significant stalls
CheckFreq reduces checkpoint stalls

- CheckFreq further reduces stalls by carefully pipelining checkpointing with compute
Overall Training Overhead

Res50 ResNext Res18 Inception VGG16 DenseNet BERT
• When the baseline checkpointing mechanism is performed at a frequency chosen by CheckFreq, it introduces 20 – 70% overhead in training time
CheckFreq lowers recovery time

<table>
<thead>
<tr>
<th>Model</th>
<th>Epoch-based (s)</th>
<th>CheckFreq (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Res50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGG16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ResNext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DenseNet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inception</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Recovery time: Time spent by the model to recover to the same state as it was before interruption
CheckFreq lowers recovery time

<table>
<thead>
<tr>
<th>Model</th>
<th>Epoch-based (s)</th>
<th>CheckFreq (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res18</td>
<td>840</td>
<td>5</td>
</tr>
<tr>
<td>Res50</td>
<td>2100</td>
<td>24</td>
</tr>
<tr>
<td>VGG16</td>
<td>5700</td>
<td>25</td>
</tr>
<tr>
<td>ResNext</td>
<td>7080</td>
<td>32</td>
</tr>
<tr>
<td>DenseNet</td>
<td>2340</td>
<td>7</td>
</tr>
<tr>
<td>Inception</td>
<td>3000</td>
<td>27</td>
</tr>
<tr>
<td>BERT</td>
<td>4920</td>
<td>85</td>
</tr>
</tbody>
</table>

- Recovery time: Time spent by the model to recover to the same state as it was before interruption
- CheckFreq reduces recovery time during an interruption from hours to seconds
Conclusion

• CheckFreq provides an automatic, fine-grained checkpointing framework for DNN training
• CheckFreq allows frequent checkpointing while incurring a low cost
• When the job is interrupted, CheckFreq reduces recovery time for popular DNNs from hours to seconds
Thank you!

Source code: https://github.com/msr-fiddle/CheckFreq

Contact: jaya@cs.utexas.edu