FlashNeuron: SSD-Enabled Large-Batch Training of Very Deep Neural Networks

Jonghyun Bae1 Jongsung Lee1,2 Yunho Jin1 Sam Son1 Shine Kim1,2 Hakbeom Jang2 Tae Jun Ham1 Jae W. Lee1

1Seoul National University 2Samsung Electronics
Rise of DNNs

- DNNs are the key enabler of today’s AI application

Object detection and classification [1]

Speech-to-text [2]

Rise of DNNs

- DNNs are the key enabler of today’s AI application
- Two types of DNN workloads: Training >> Inference
 - 3x the computation: forward propagation, backward propagation, and weight update

Rise of DNNs

- DNNs are the key enabler of today’s AI application
- Two types of DNN workloads: Training >> Inference
 - 3x the computation: forward propagation, backward propagation, and weight update

Rise of DNNs

- DNNs are the key enabler of today’s AI application
- Two types of DNN workloads: Training >> Inference
 - 3x the computation: forward propagation, backward propagation, and weight update

Data Reuse in DNN Training

- Data reuse pattern from forward propagation to backward propagation
 - Requiring input activation (X), and output error (dY) to calculate input gradient map (dX), weight gradient (dW), and finally weight (W)

Simplified data reuse pattern in a layer
Data Reuse in DNN Training

- Data reuse pattern from forward propagation to backward propagation
 - Requiring input activation (X), and output error (dY) to calculate input gradient map (dX), weight gradient (dW), and finally weight (W)

```
<table>
<thead>
<tr>
<th>Activation (X)</th>
<th>Weight (W)</th>
<th>Weight grad. (dW)</th>
<th>Error (dX)</th>
<th>Error (dY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward pass</td>
<td>Activation (Y)</td>
<td>Weight update</td>
<td>Backward pass</td>
<td></td>
</tr>
</tbody>
</table>
```

Simplified data reuse pattern in a layer
Data Reuse in DNN Training

- Data reuse pattern from forward propagation to backward propagation
 - Requiring input activation (X), and output error (dY) to calculate input gradient map (dX), weight gradient (dW), and finally weight (W)

Simplified data reuse pattern in a layer
Memory Capacity Wall in DNN Training

- DRAM footprint increases with (1) **deeper neural nets** (for accuracy) and (2) **larger batch size** (for training throughput)

![GPU memory usage for DNN training](image)

- **Baseline GPU mem**
- **Input + Intermediate result**
- **Weight**
- **Temporary buf.**

<table>
<thead>
<tr>
<th>Model</th>
<th>Batch Size</th>
<th>Memory Usage (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-1922</td>
<td>1x</td>
<td>1x</td>
</tr>
<tr>
<td>DenseNet-1001</td>
<td>2x</td>
<td>2x</td>
</tr>
<tr>
<td>BERT-XLarge</td>
<td>8x</td>
<td>8x</td>
</tr>
<tr>
<td>HBMP</td>
<td>1x</td>
<td>2x</td>
</tr>
<tr>
<td></td>
<td>2x</td>
<td>8x</td>
</tr>
</tbody>
</table>

Legend:
- □ Baseline GPU mem
- □ Input + Intermediate result
- □ Weight
- □ Temporary buf.
Overcoming GPU Memory Capacity Wall

- Previous approach: Buffering-on-memory
 - Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

![Diagram showing DRAM bandwidth contention and buffering-on-memory](image)

<table>
<thead>
<tr>
<th>Model</th>
<th>50%</th>
<th>70%</th>
<th>90%</th>
<th>50%</th>
<th>70%</th>
<th>90%</th>
<th>50%</th>
<th>70%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-1922</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DenseNet-1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT-XLarge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normalized throughput of buffering-on-memory with bandwidth-intensive tasks on CPU
Overcoming GPU Memory Capacity Wall

- Previous approach: Buffering-on-memory
 - Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

- New solution: Buffering-on-SSD
Overcoming GPU Memory Capacity Wall

- **Previous approach: Buffering-on-memory**
 - Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

- **New solution: Buffering-on-SSD**
 - With peer-to-peer communication, no host DRAM bandwidth or CPU cycles consumed
Our Proposal: FlashNeuron

- **Key idea**: DNN training using a high-performance SSD as a backing store
 - **Offloading scheduler**: Identify a set of tensors to offload and generates an offloading schedule
 - **Memory manager**: Manage offloading/prefetching and tensor allocation/deallocation
 - **Lightweight user-level I/O stack**: Customized stack for p2p communication

- **Key results**
 - Batch size: \(12.4x\) to \(14.0x\) over the maximum allowable batch size on 16GB HBM
 - Training throughput improvement: Up to \(37.8\%\) (\(30.3\%\) on average) over the baseline
 - Cost efficiency: \(35.3x\) higher cost efficiency assuming the same capacity of DRAM and SSD
System Overview

Training model structure

DNN Training Framework

Operation Core

Memory Manager

Offloading Scheduler

Peer-to-peer Direct Storage Access

User-space NVMe Driver
System Overview

DNN Training Framework

Operation Core

Memory Manager

Peer-to-peer Direct Storage Access

User-space NVMe Driver

Profiling result

Offloading Scheduler

Scheduling result

Training model structure
System Overview

Training model structure

DNN Training Framework

Operation Core

Memory Manager

Tensor offload/prefetch

Memory (de-)allocation

Result of offload/prefetch

Offload/prefetch using tensor index

Peer-to-peer Direct Storage Access

User-space NVMe Driver

Offloading Scheduler

System Overview

Training model structure

DNN Training Framework

Operation Core

Memory Manager

Tensor offload/prefetch

Memory (de-)allocation

Result of offload/prefetch

Offload/prefetch using tensor index

Peer-to-peer Direct Storage Access

User-space NVMe Driver

Offloading Scheduler
System Overview

![Diagram of the system overview](diagram.png)

- **Training model structure**
- **DNN Training Framework**
 - **Operation Core**
- **Memory Manager**
- **Peer-to-peer Direct Storage Access**
 - **User-space NVMe Driver**
 - **Offloading Scheduler**
- **I/O cmd.**
- **Completion**

- **Offload/prefetch using tensor index**
- **Result of offload/prefetch**
Offloading Scheduler: Phase 1

- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning

- Compression-friendly:
 - : Uncompressible
 - : Low
 - : High

- Tensor Size:
 - 6MB
 - 2MB
 - 4MB
 - 4MB
 - 4MB
 - 2MB
 - 2MB
 - \(= 24 \text{MB}\)

- Spillover: 16MB
- GPU memory: 8MB
Offloading Scheduler: Phase 1

- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning

Compression-friendly:

- Uncompressible
- Low
- High

Tensor Size:

- 6MB
- 2MB
- 4MB
- 4MB
- 4MB
- 2MB
- 2MB

Spillover: 10MB

GPU memory: 8MB

Offloading tensor A

= 18MB
Offloading Scheduler: Phase 1

- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning

Compressed-friendly:

| Compression-friendy | Uncompressible | Low | High |

Tensor Size:

| A | B | C | D | E | F | G |
| 6MB | 2MB | 4MB | 4MB | 4MB | 2MB | 2MB |

Spillover: 8MB

GPU memory: 8MB

Offloading tensors A and B

4MB + 4MB + 4MB + 2MB + 2MB = 16MB
Offloading Scheduler: Phase 1

- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning

Tensor Size:
- A: 6MB
- B: 2MB
- C: 4MB

Spillover: 4MB
GPU memory: 8MB

Compression-friendly:
- Uncompressible
- Low
- High

Offloading:
- Tensor A
- Tensor B
- Tensor C

4MB + 4MB + 2MB + 2MB = 12MB
Offloading Scheduler: Phase 1

- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning

Compression-friendly:
- Uncompressible
- Low
- High

Tensor Size:
- 6MB
- 2MB
- 4MB

Spillover: 0MB

GPU memory: 8MB

Offloading tensor A
Offloading tensor B
Offloading tensor C
Offloading tensor D

4MB + 2MB + 2MB = 8MB
Offloading Scheduler: Phase 1

- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning

Compression-friendly:
- : Uncompressible
- : Low
- : High

Tensor Size:
- A: 6MB
- B: 2MB
- C: 4MB
- D: 4MB
- E: 4MB
- F: 2MB
- G: 2MB

Spillover: 0MB

GPU memory: 8MB

- Offloading tensor A
- Offloading tensor B
- Offloading tensor C
- Offloading tensor D
Offloading Scheduler: Phase 2

- Finding an optimal scheduler for a given target batch size
- **Phase 1**
 - Iteratively select a certain number of tensors from the beginning
- **Phase 2**
 - Replace the tensors as offloading candidates with more compression-friendly tensors

Compression-friendly:
- : Uncompressible
- : Low
- : High

Tensor Size:
- 6MB
- 2MB
- 4MB
- 4MB

Spillover: 0MB

GPU memory: 8MB

Offloading:
- Tensor A
- Tensor B
- Tensor C
- Tensor D
- Tensor E
- Tensor F
- Tensor G

Offloading candidates:
- Tensor A
- Tensor B
- Tensor C
- Tensor D
Offloading Scheduler: Phase 2

- Finding an optimal scheduler for a given target batch size
- **Phase 1**
 - Iteratively select a certain number of tensors from the beginning
- **Phase 2**
 - Replace the tensors as offloading candidates with more compression-friendly tensors

Compression-friendly: □: Uncompressible □: Low □: High

Tensor Size: 6MB 2MB 4MB 4MB 4MB 2MB 2MB

Spillover: 0MB

GPU memory: 8MB

- Offloading tensor A
- Offloading tensor B
- Offloading tensor C
- Offloading tensor E

A
B
C
D
E
F
G
Offloading Scheduler: Phase 2

- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning
- Phase 2
 - Replace the tensors as offloading candidates with more compression-friendly tensors

Compression-friendly:

<table>
<thead>
<tr>
<th>Tensor</th>
<th>Size</th>
<th>Spillover</th>
<th>GPU Memory</th>
<th>Offloading</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6MB</td>
<td>0MB</td>
<td>8MB</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>21MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>2MB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Peer-to-peer Direct Storage Access (P2P-DSA)

- Lightweight I/O stack to enable direct tensor offloading/prefetching
- Example walk-through

1. Index “1” transfer request
2. Set contiguous LBAs

<table>
<thead>
<tr>
<th>Metadata Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

P2P-DSA

Queue

PCIe Bus

GPU Base Address Register (BAR)

GPU

NVMe SSD

Index 0

0 1 ... 2048 ... 8192 ... Max. LBA
Peer-to-peer Direct Storage Access (P2P-DSA)

- Lightweight I/O stack to enable direct tensor offloading/prefetching
- Example walk-through

![Diagram of P2P-DSA]

1. LBA Allocator
2. Metadata Table
3. Create and push cmd.
4. Issue cmd.

Metadata Table

<table>
<thead>
<tr>
<th>Index</th>
<th>LBA</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>True</td>
</tr>
<tr>
<td>1</td>
<td>2048</td>
<td></td>
</tr>
</tbody>
</table>

LBA Allocator

- Peer-to-peer Direct Storage Access (P2P-DSA)
Peer-to-peer Direct Storage Access (P2P-DSA)

- Lightweight I/O stack to enable direct tensor offloading/prefetching
- Example walk-through

<table>
<thead>
<tr>
<th>Index</th>
<th>LBA</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>True</td>
</tr>
<tr>
<td>1</td>
<td>2048</td>
<td>True</td>
</tr>
</tbody>
</table>

Index 0

Transfer

Index 1

Max. LBA

0 1 ... 2048 ... 8192 ...
Methodology

System configurations

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Intel Xeon Gold 6244 CPU 8 cores @ 3.60GHz</td>
</tr>
<tr>
<td>GPU</td>
<td>NVIDIA Tesla V100 16GB PCIe</td>
</tr>
<tr>
<td>Memory</td>
<td>Samsung DDR4-2666 64GB (32GB x 2)</td>
</tr>
<tr>
<td>Storage</td>
<td>Samsung PM1725b 8TB PCIe Gen3 8-lane x 2 (Seq. write: 3.3GB/s, seq. read: 6.3GB/s)</td>
</tr>
<tr>
<td>OS</td>
<td>Ubuntu server 18.04.3 LTS</td>
</tr>
<tr>
<td>Python</td>
<td>Version 3.7.3</td>
</tr>
<tr>
<td>PyTorch</td>
<td>Version 1.2</td>
</tr>
</tbody>
</table>

DNN models and datasets

<table>
<thead>
<tr>
<th>Network</th>
<th>Dataset</th>
<th># of layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-1922</td>
<td>ImageNet</td>
<td>1922</td>
</tr>
<tr>
<td>DenseNet-1001</td>
<td>ImageNet</td>
<td>1001</td>
</tr>
<tr>
<td>BERT-XLarge</td>
<td>SQuAD 1.1</td>
<td>48 transformer blocks</td>
</tr>
<tr>
<td>HBMP</td>
<td>SciTail</td>
<td>24 hidden layers</td>
</tr>
</tbody>
</table>
Evaluation: Overall Results

- **12.4x to 14x** batch size increment compared to the baseline using GPU memory only
- **Up to 37.8% (30.3% on average)** training throughput improvement

<table>
<thead>
<tr>
<th>Baseline</th>
<th>P2P</th>
<th>P2P+CSR</th>
<th>P2P+FP16</th>
<th>Buffering-on-SSD (FlashNeuron)</th>
<th>Buffering-on-memory</th>
</tr>
</thead>
</table>

- **ResNet-1922**
 - Images/sec vs. Batch size
- **DenseNet-1001**
 - Images/sec vs. Batch size
- **BERT-XLarge**
 - Sequences/sec vs. Batch size
- **HBMP**
 - Sequences/sec vs. Batch size
Evaluation: Co-locating Bandwidth-Intensive Tasks on CPU

- **Throughput of DNN training on GPU**
 - Buffering-on-memory: **40.2%** throughput degradation when CPU utilizes 90% of the memory BW
 - FlashNeuron: **20.2%** throughput gain when CPU utilizes 90% of the memory BW

![Graph showing throughput with different scenarios](image)

<table>
<thead>
<tr>
<th>Model</th>
<th>Buffering-on-SSD (FlashNeuron)</th>
<th>Buffering-on-memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-1922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DenseNet-1001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT-XLarge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBMP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FlashNeuron enables large-batch training of very deep and wide neural networks

• Identify a bandwidth contention problem in recent buffering-on-memory proposal

• Introduce a novel offloading scheduler to fully utilize the scarce SSD write bandwidth

• Implement a lightweight user-space I/O stack customized for DNN training
Thank You!

Source code of FlashNeuron is available at https://github.com/SNU-ARC/flashneuron.git