Quiver: An informed storage cache for Deep Learning

Abhishek Vijaya Kumar, Muthian Sivathanu

Microsoft Research India
Deep Learning: Important systems workload

• Already powers many real-world applications
 • Voice assistants
 • Web search

• Compute intensive – expensive hardware e.g. GPUs
Deep Learning: Important systems workload

- Already powers many real-world applications
 - Voice assistants
 - Web search
- Compute intensive – expensive hardware e.g. GPUs
Deep Learning: Important systems workload

• Already powers many real-world applications
 • Voice assistants
 • Web search
• Compute intensive – expensive hardware e.g. GPUs
Deep Learning: Important systems workload

• Already powers many real-world applications
 • Voice assistants
 • Web search
• Compute intensive – expensive hardware e.g. GPUs
Deep Learning: Important systems workload

• Already powers many real-world applications
 • Voice assistants
 • Web search
• Compute intensive – expensive hardware e.g. GPUs

1V100 = 140 tflops/s
Example workload

- Resnet50 is a popular vision model
- Process 10,500 images/sec on 8 Nvidia V100s
- **Goal: Keep GPUs busy and utilize them efficiently**
Example workload

- Resnet50 is a popular vision model
- Process 10,500 images/sec on 8 Nvidia V100s
- **Goal: Keep GPUs busy and utilize them efficiently**

Remote store with several TBs of training data

Hyper-parameter tuning

\[2 \text{GB/s} \times K \]
Example workload

- Resnet50 is a popular vision model
- Process 10,500 images/sec on 8 Nvidia V100s
- **Goal: Keep GPUs busy and utilize them efficiently**
Example workload

- Resnet50 is a popular vision model
- Process 10,500 images/sec on 8 Nvidia V100s
- **Goal: Keep GPUs busy and utilize them efficiently**

Remote store with several TBs of training data

- **Cheap Preemptible VMs** => Job Migration
- **Large datasets**
- Hyper-parameter tuning

Load on Network

Load on Storage

2GB/s * K
Quiver: Key ideas

- Domain specific intelligence at caching layer
 - Substitutability – Use existing contents of the cache to avoid thrashing
- Hash-based content addressing for security
- Co-designed with deep-learning framework (PyTorch)
- Dynamically manages cache allocation
- Improve cluster throughput up-to 2.3x
Structure

• Introduction & Motivation
• Background
• Design
• Implementation
• Evaluation
Background: Deep Learning

- Learn a model to **represent** training data
- Iterate over random subsets of input data – **Mini batch**
- Perform **Gradient Descent (SGD)** on each mini-batch
- Process the entire dataset in random order – **Epoch**
A cache for DLT jobs

• DLT datasets are accessed multiple times
 • Within same job: Multiple epochs read the entire dataset
 • Across jobs: Hyperparameter exploration, popular datasets (e.g. ImageNet)

• Good fit for caching
A cache for DLT jobs

- DLT datasets are accessed multiple times
 - Within same job: Multiple epochs read the entire dataset
 - Across jobs: Hyperparameter exploration, popular datasets (e.g. ImageNet)
- Good fit for caching

- Challenges
 - Random access within epoch => Partial caching can cause thrashing (e.g. LRU)
 - Job Heterogeneity => Not all jobs benefit the same from caching
 - Secure inter-job data access
A cache for DLT jobs

• DLT datasets are accessed multiple times
 • Within same job: Multiple epochs read the entire dataset
 • Across jobs: Hyperparameter exploration, popular datasets (e.g. ImageNet)
• Good fit for caching

• Challenges
 • Random access within epoch => Partial caching can cause thrashing (e.g. LRU)
 • Job Heterogeneity => Not all jobs benefit the same from caching
 • Secure inter-job data access
• Quiver: Use domain intelligence to address these challenges
#1: Thrashing-proof partial caching

- Two I/O properties
 - Each input touched once in an epoch
 - Every mini-batch needs to be randomly sampled

- **Substitutable hits**
 - I/O is substitutable
 - Mini-batch samples order does not matter, as long as it is random
#1: Thrashing-proof partial caching

- **Substitutability** while sampling
- Looks up more than the number of indices and returns whatever is in the cache (*substitutable hits*)
#1: Thrashing-proof partial caching

- **Substitutability** while sampling
- Looks up more than the number of indices and returns whatever is in the cache (**substitutable hits**)

Default Sampling
(1 hit, 2 misses)
#1: Thrashing-proof partial caching

- **Substitutability** while sampling
- Looks up more than the number of indices and returns whatever is in the cache (*substitutable hits*)
#2: Job heterogeneity and caching

• Benefit-aware caching to handle Job heterogeneity
 • Time per mini-batch is an application-specific metric for performance
 • Allows cheap profiling to measure benefits from cache

• **Predictability**
 • Measure time per minibatch with different caching modes
 • Given total space budget, the manager allocates cache per dataset
#3: Secure Inter-Job Data access

• Multiple jobs and users share cache
• Data needs reuse/sharing while retaining isolation
• Each file is addressed by its hash instead of its name
#3: Secure Inter-Job Data access

- Multiple jobs and users share cache
- Data needs reuse/sharing while retaining isolation
- Each file is addressed by its hash instead of its name
#3: Secure Inter-Job Data access

- Multiple jobs and users share cache
- Data needs reuse/sharing while retaining isolation
- Each file is addressed by its hash instead of its name

User1/imagenet/file.jpg

User2/imgnt/file.jpg
#3: Secure Inter-Job Data access

- Multiple jobs and users share cache
- Data needs reuse/sharing while retaining isolation
- Each file is addressed by its hash instead of its name
Structure

• Introduction & Motivation
• Background
• Design
• Implementation
• Evaluation
Architecture of Quiver

• Quiver cache server
• Quiver cache client co-designed with PyTorch
• Quiver cache manager
• Quiver instance types
 1. Entire cluster
 2. Each rack
Architecture of Quiver

- Quiver cache server
- Quiver cache client co-designed with PyTorch
- Quiver cache manager
- Quiver instance types
 1. Entire cluster
 2. Each rack
Architecture of Quiver

• Quiver cache server
• Quiver cache client co-designed with PyTorch
• Quiver cache manager
• Quiver instance types
 1. Entire cluster
 2. Each rack
Cache Access

• Client is integrated with PyTorch data-layer
 • Fetches files from remote on misses
 • Populates the cache servers

• Works with **hash-digest** file

• Incorporates *substitutable hits* and *co-operative miss handling*
Hash digest and Partition

• Dataset is represented by a hash-digest
• Major components of an entry in the hash-file
 • <content_hash: file_location>
• Key space is partitioned across servers
Hash digest and Partition

• Dataset is represented by a hash-digest
• Major components of an entry in the hash-file
 • `<content_hash: file_location>`
• Key space is partitioned across servers

![Diagram of cache servers and file locations](image-url)
Hash digest and Partition

• Dataset is represented by a hash-digest
• Major components of an entry in the hash-file
 • <content_hash: file_location>
• Key space is partitioned across servers
Co-operative miss handling

• Misses are sharded across jobs using same dataset.
 • Sharding is implicit by randomizing indices
 • \textit{Happens naturally in DLT access pattern}
 • \textit{Jobs benefit from other jobs as they progress}
Co-operative miss handling

- Misses are sharded across jobs using same dataset.
 - Sharding is implicit by randomizing indices
 - Happens naturally in DLT access pattern
 - Jobs benefit from other jobs as they progress
Co-operative miss handling

• Misses are sharded across jobs using same dataset.
 • Sharding is implicit by randomizing indices
 • *Happens naturally in DLT access pattern*
 • *Jobs benefit from other jobs as they progress*
Co-operative miss handling

• Misses are sharded across jobs using same dataset.
 • Sharding is implicit by randomizing indices
 • *Happens naturally in DLT access pattern*
 • *Jobs benefit from other jobs as they progress*
Co-ordinated eviction

- Dataset partition
 - Digest file is partitioned into given number of chunks
- Double buffering of chunks
 - Chunks allow coordinated access of cache
- Co-ordinated eviction
 - Mark for eviction – no new refs
 - Then evict
 - Similar to UNIX `unlink` call
Co-ordinated eviction

• Dataset partition
 • Digest file is partitioned into given number of chunks

• Double buffering of chunks
 • Chunks allow coordinated access of cache
 • Co-ordinated eviction
 • Mark for eviction – no new refs
 • Then evict
 • Similar to UNIX `unlink` call

Double buffer of a Cache server
Co-ordinated eviction

• Dataset partition
 • Digest file is partitioned into given number of chunks

• Double buffering of chunks
 • Chunks allow coordinated access of cache
 • Co-ordinated eviction
 • Mark for eviction – no new refs
 • Then evict
 • Similar to UNIX unlink call
Co-ordinated eviction

• Dataset partition
 • Digest file is partitioned into given number of chunks

• Double buffering of chunks
 • Chunks allow coordinated access of cache
 • Co-ordinated eviction
 • Mark for eviction – no new refs
 • Then evict
 • Similar to UNIX `unlink` call
Co-ordinated eviction

• Dataset partition
 • Digest file is partitioned into given number of chunks

• Double buffering of chunks
 • Chunks allow coordinated access of cache

• Co-ordinated eviction
 • Mark for eviction – no new refs
 • Then evict
 • Similar to UNIX `unlink` call
Co-ordinated eviction

- Dataset partition
 - Digest file is partitioned into given number of chunks

- Double buffering of chunks
 - Chunks allow coordinated access of cache
 - Co-ordinated eviction
 - Mark for eviction – no new refs
 - Then evict
 - Similar to UNIX unlink call
Structure

• Introduction & Motivation
• Design
• Implementation & Evaluation
Implementation

• Cache client (900 LoC)
 • Dataloader of PyTorch (v 1.1.0)
 • Dataset of PyTorch
 • Sampler of PyTorch

• Cache server (1200 LOC)
 • A C++ key value store

• Cache manager
 • A python program
Evaluation Setup

• Cluster (48 GPUs)
 • 6 VMs with 4 NVIDIA P100 GPUs
 • 6 VMs with 4 NVIDIA P40 GPUs

• Workloads
 • Resnet50 on Imagenet dataset (154 GB)
 • Inception_V3 on openimages dataset (531 GB)
 • DeepSpeech2 on LibriSpeech dataset (90 GB)
Impact on accuracy

RESNET50 on Imagenet

<table>
<thead>
<tr>
<th>Config</th>
<th>Word Error Rate (WER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Sampling</td>
<td>22.29</td>
</tr>
<tr>
<td>Quiver Sampling</td>
<td>22.32</td>
</tr>
</tbody>
</table>

DeepSpeech2 on LibriSpeech

Similar curves
Throughput increase because of quvier

Resnet50

<table>
<thead>
<tr>
<th>Workload</th>
<th>Baseline</th>
<th>HIT</th>
<th>CO-OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resnet50</td>
<td>2505</td>
<td>646 (3.88x)</td>
<td>1064 (2.35x)</td>
</tr>
</tbody>
</table>
Throughput increase because of quvier

<table>
<thead>
<tr>
<th>Workload</th>
<th>Baseline</th>
<th>HIT</th>
<th>CO-OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resnet50</td>
<td>2505</td>
<td>646 (3.88x)</td>
<td>1064 (2.35x)</td>
</tr>
<tr>
<td>Inception</td>
<td>2874</td>
<td>1274 (2.26x)</td>
<td>1817 (1.58x)</td>
</tr>
<tr>
<td>DeepSpeech</td>
<td>1614</td>
<td>1234 (1.31x)</td>
<td>1265 (1.28x)</td>
</tr>
</tbody>
</table>
Co-ordinated eviction in action
Co-ordinated eviction in action

- 2 Chunks cached at a time
- New jobs start using 3rd chunk
Co-ordinated eviction in action

- 2 Chunks cached at a time
- New jobs start using 3rd chunk
Benefit aware caching
• Mixed workload – 12 Different jobs
• Quiver preferentially allocates cache to different datasets
• Quiver yields sizeable benefits even with tiny cache (100G)
• Improvement in cluster throughput ranges between 1.6x to 2.3x
Summary

• Quiver is a domain-specific storage cache for DLT jobs
• Utilizes I/O behavior of deep learning training jobs
 • Substitutable hits => New thrash-proof partial caching
 • Predictability => Benefit-aware caching

• Improves cluster GPU utilization by reducing I/O wait time
• Implemented in PyTorch