An Empirical Guide to the Behavior and Use of Scalable Persistent Memory

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, Steven Swanson

Non-Volatile Systems Laboratory
Department of Computer Science & Engineering
University of California, San Diego

Department of Electrical, Computer & Energy Engineering
University of Colorado, Boulder
Optane DIMMs are Here!
Optane DIMMs are Here!

Cool.
Optane DIMMs are Here!

- Not Just Slow Dense DRAM™
Optane DIMMs are Here!

- Not Just Slow Dense DRAM™

- Slower media
 - More complex architecture
 - Second-order performance anomalies
 - Fundamentally different
Outline

• Background
• Basics: Optane DIMM Performance
• Lessons: Optane DIMM Best Practices
 – *not included: Emulation Study, Best Practices in Macrobenchmarks (see the paper)
• Conclusion
Background
Background: Optane in the Machine

Memory Mode

- Optane DIMM
- DRAM
- Near Memory (Direct Mapped Cache)
- Optane DIMM
- DRAM
- Optane DIMM
- DRAM
- Optane DIMM
- DRAM

Far Memory

- Optane DIMM
- DRAM
- Optane DIMM
- DRAM
- Optane DIMM
- DRAM

- iMC
- L3
- L1/2
- Core
- Core
- Core

AppDirect Mode

- Optane DIMM
- DRAM
- Optane DIMM
- DRAM
- Optane DIMM
- DRAM
Background: Optane in the Machine

Far Memory
- Optane DIMM
- Optane DIMM
- Optane DIMM

Near Memory (Direct Mapped Cache)
- DRAM
- DRAM
- DRAM
- iMC
- iMC
- L3
- L1/2
- L1/2
- L1/2
- Core
- Core
- Core

Memory Mode

AppDirect Mode
- DRAM
- Optane DIMM
- DRAM
- Optane DIMM
- DRAM
- Optane DIMM
Background: Optane Internals

Optane DIMM
Background: Optane Internals

Optane DIMM

iMC

WPQ

From CPU
Background: Optane Internals

From CPU

iMC

WPQ

Optane DIMM

Optane Controller
Background: Optane Internals

From CPU

iMC

WPQ

Optane DIMM

Optane Controller

256B Block

Optane Media
Background: Optane Internals

From CPU

iMC

WPQ

Optane DIMM

Optane Controller Optane Buffer

256B Block

Optane Media

MC

$DRAM$
Background: Optane Internals

Optane DIMM

- Optane Controller
- Optane Buffer
- AIT Cache
- Optane Media
- AIT

From CPU

256B Block

WPQ
Background: Optane Internals
Background: Optane Interleaving

- Optane is interleaved across NVDIMMs at 4KB granularity.
Background: Optane Interleaving

- Optane is interleaved across NVDIMMs at 4KB granularity.
Basics: How does Optane DC perform?
Basics: Our Approach

- Microbenchmark sweeps across state space
 - Access Patterns (random, sequential)
 - Operations (read, ntstore, clflush, etc.)
 - Access/Stride Size
 - Power Budget
 - NUMA Configuration
 - Address Space Interleaving
- Targeted experiments
- Total: 10,000 experiments
 - https://github.com/NVSL/OptaneStudy
Test Platform

- **CPU**
 - Intel Cascade Lake, 24 cores at 2.2 GHz in 2 sockets
 - Hyperthreading off
- **DRAM**
 - 32 GB Micron DDR4 2666 MHz
 - 384 GB across 2 sockets w/ 6 channels
- **Optane**
 - 256 GB Intel Optane 2666 MHz QS
 - 3 TB across 2 sockets w/ 6 channels
- **OS**
 - Fedora 27, 4.13.0
Basics: Latency

- 2x -3x as slow as DRAM
- Write latency masked by ADR
Basics: Bandwidth

- ~Scalable reads, Non-scalable writes
Basics: Bandwidth

• Access size matters

![Graph showing bandwidth for DRAM and Optane-NI](image-url)
Basics: Bandwidth

- A mystery!
Lessons: What are Optane Best Practices?
Lessons: What are Optane Best Practices?

- Avoid small random accesses
- Use ntstores for large writes
- Limit threads accessing one NVDIMM
- Avoid mixed and multi-threaded NUMA accesses
Lesson #1: Avoid small random accesses
Lesson #1: Avoid small random accesses
Lesson #1: Avoid small random accesses

From CPU

iMC

WPQ

Optane DIMM

Optane Controller

Optane Buffer

AIT Cache

256B Block

Optane Media

AIT

MC

$DRAM$
Lesson #1: Avoid small random accesses

From CPU

iMC

WPQ

Optane DIMM

Optane Controller

Optane Buffer

AIT Cache

256B Block

Optane Media

AIT

Optane Media

Mc

DRAM

Optane

$
Lessons: Optane Buffer Size

- Write amplification if working set is larger than Optane Buffer
Lesson #1: Avoid small random accesses

• Bad bandwidth with:
 – Small random writes (<256B)
 – Not tiny working set / NVDIMM (>16KB)

• Good bandwidth with
 – Sequential accesses
Lesson #2: Use ntstores for large writes
Lessons: Store instructions

- ntstore
- store + clwb
- store
Lessons: Store instructions

ntstore

store + clwb

*lost bandwidth

store

*lost locality
Lesson #2: Use ntstores for large writes
Lesson #2: Use ntstores for large writes

• Non-temporal stores bypass the cache
 – Avoid cache-line read
 – Maintain locality
Lesson #3: Limit threads accessing one NVDIMM
Lesson #3: Limit threads accessing one NVDIMM

• Contention at Optane Buffer

• Contention at iMC
Lessons: Contention at Optane Buffer

- More threads = access amplification = lower bandwidth
Lessons: Contention at iMC

• iMCs aren’t designed for slow, variable latency accesses
 – Short queues end up clogged
Lessons: Contention at iMC

- Vary #threads/NVDIMM (total threads = 6)
Lesson: Contention at iMC

- iMC contention is largest when random access size = interleave size (4KB)
Lesson: Contention at iMC

- iMC contention is largest when random access size = interleave size (4KB)
- iMC load is fairest when access size = #DIMMs x interleave size (24KB)
Lesson #3: Limit threads accessing one NVDIMM

• Contention at Optane Buffer
 – Increase access amplification
• Contention at iMC
 – Lose bandwidth through uneven NVDIMM load
 – Avoid interleave aligned random accesses
Lesson #4: Avoid mixed and multi-threaded NUMA accesses
Lesson #4: Avoid mixed and multi-threaded NUMA accesses

• NUMA effects impact Optane more than DRAM
Lesson #4: Avoid mixed and multi-threaded NUMA accesses

- NUMA effects impact Optane more than DRAM
- R/W ratio is more important

![Graph showing bandwidth (GB/s) for different R/W ratios and Optane/Remote Optane]
Lesson #4: Avoid mixed and multi-threaded NUMA accesses
Conclusion
Conclusion

• Not Just Slow Dense DRAM
• Slower media
 -> More complex architecture
 -> Second-order performance anomalies
 -> Fundamentally different

• Max performance is tricky
 – Avoid small random accesses
 – Use ntstores for large writes
 – Limit threads accessing one NVDIMM
 – Avoid mixed and multi-threaded NUMA accesses