
How to Copy Files

Yang Zhan1,2, Alex Conway3,4, Ian Groombridge5, Yizheng Jiao1,
Nirjhar Mukherjee1, Michael A. Bender6, Martín Farach-Colton3,

William Jannen7, Rob Johnson4, Donald E. Porter1, Jun Yuan5

1 2 3 4 5 6 7

Copying is Ubiquitous and Important

2

cp -r

container instantiation
vmrun start

backup

Copying

3

Physical Copy

Copying

4

High Latency

Physical Copy

High Space Use

Existing Logical Copy Implementations

5

BTRFS

XFS

ZFS

Leverages the underlying copy-on-write B-tree to implement
cp --reflink

Uses an update-in-place B-tree but supports sharing data
blocks with copy-on-write via cp --reflink

Implements a limited version of copy-on-write copying via
zfs clone

Copying

6

High Latency

Copy on Write

High Space Use

Physical Copy

Copying

7

High Latency Low Latency

Copy on Write

High Space Use Better Space Use

High Fragmentation

Physical Copy

Copying

8

High Latency Low Latency

Copy on Write

High Space Use Better Space Use

High Fragmentation

Physical Copy

Space Amplification and Fragmention

9

Init: 64 4MiB files with random data.
Each round: logically copy all files, then change 16B in each file (1KiB total)

Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

 4GiB RAM
500GB 7200 RPM SATA disk

Space Amplification and Fragmention

10

Sp
ac

e
Am

pl
ifi

ca
tio

n

0

100

200

300

BTRFS XFS ZFS

Init: 64 4MiB files with random data.
Each round: logically copy all files, then change 16B in each file (1KiB total)

Space Amplification
additional file system size / added data (1KiB)

Lo
w

er
 is

 B
et

te
r

Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

 4GiB RAM
500GB 7200 RPM SATA disk

Space Amplification and Fragmention

11

Init: 64 4MiB files with random data.
Each round: logically copy all files, then change 16B in each file (1KiB total)

Fragmentation
measured by timing a grep over the latest copy

Space Amplification
additional file system size / added data (1KiB)

Lo
w

er
 is

 B
et

te
r

Sp
ac

e
Am

pl
ifi

ca
tio

n

0

100

200

300

BTRFS XFS ZFS

gr
ep

 ti
m

e
(s

ec
on

ds
)

0

2

4

6

8

Logical copy number
0 1 2 3 4 5 6 7 8

BTRFS XFS ZFS

Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

 4GiB RAM
500GB 7200 RPM SATA disk

gr
ep

 ti
m

e
(s

ec
on

ds
)

0

2

4

6

8

Logical copy number
0 1 2 3 4 5 6 7 8

BTRFS XFS ZFS

Space Amplification and Fragmention

12

Init: 64 4MiB files with random data.
Each round: logically copy all files, then change 16B in each file (1KiB total)

Fragmentation
measured by timing a grep over the latest copy

Space Amplification
additional file system size / added data (1KiB)

Lo
w

er
 is

 B
et

te
r

Sp
ac

e
Am

pl
ifi

ca
tio

n

0

100

200

300

BTRFS XFS ZFS

Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

 4GiB RAM
500GB 7200 RPM SATA disk

Have large space
amplification

Sp
ac

e
Am

pl
ifi

ca
tio

n

0

100

200

300

BTRFS XFS ZFS

Space Amplification and Fragmention

13
gr

ep
 ti

m
e

(s
ec

on
ds

)

0

2

4

6

8

Logical copy number
0 1 2 3 4 5 6 7 8

BTRFS XFS ZFS

Init: 64 4MiB files with random data.
Each round: logically copy all files, then change 16B in each file (1KiB total)

Fragmentation
measured by timing a grep over the latest copy

Space Amplification
additional file system size / added data (1KiB)

Lo
w

er
 is

 B
et

te
r

Have large space
amplification

Or high
fragmentation

Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

 4GiB RAM
500GB 7200 RPM SATA disk

Copy Performance Goals

14

Copy Performance Goals

15

Space efficient

Low latency

Specific to Copying

Copy Performance Goals

16

Space efficient

Low latency

Fast writes

Fast reads

General file systemSpecific to Copying

Copy Performance Goals

17

Space efficient

Low latency

Fast writes

Fast reads

General file systemSpecific to Copying

Locality

Contributions of this Paper

18

A high performance logical copy implementation…

Contributions of this Paper

19

A high performance logical copy implementation…

In BεtrFS, which leverages the properties of Copy-on-Write Bε-trees

Contributions of this Paper

20

Space efficient

Low latency

Fast writes

Fast reads

Copy-specific General file system

A high performance logical copy implementation…

In BεtrFS, which leverages the properties of Copy-on-Write Bε-trees

Contributions of this Paper

21

Space efficient

Low latency

Fast writes

Fast reads

Copy-specific General file system

✓

✓

✓

✓

A high performance logical copy implementation…

In BεtrFS, which leverages the properties of Copy-on-Write Bε-trees

What is the Challenge of
Logical Copy?

Example: Logical copy in an
inode file system

Logical Copy in an Inode File System

24

foo

/

fre
d

Copy /foo to /bar

Logical Copy in an Inode File System

25

foo

/

directory inode

file inode

data block

Copy /foo to /bar

fre
d

Logical Copy in an Inode File System

26

foo

/

Copy /foo to /bar

fre
d

Logical Copy in an Inode File System

27

foo

/

copy
baroriginal

Copy /foo to /bar

fre
d

Logical Copy in an Inode File System

28

foo

/

baroriginal

Low latency

Space efficient

Fast Reads

Fast Writes ?
?

?
?Copy /foo to /bar

fre
d

copy

Logical Copy in an Inode File System

29

foo

/

baroriginal

Low latency

Space efficient

✓ Fast Reads

Fast Writes ?
?

?
Copy /foo to /bar

fre
d

copy

Logical Copy in an Inode File System

30

foo

/

baroriginal

Low latency

Space efficient

✓ Fast Reads

Fast Writes ?
?

?

change 1
bit here

Copy /foo to /bar

fre
d

copy

Logical Copy in an Inode File System

31

foo

/

baroriginal

Low latency

Space efficient

✓

change 1
bit here

copy with
new bit

Fast Reads

Fast Writes ?
?

?
Copy /foo to /bar

fre
d

copy

Logical Copy in an Inode File System

32

foo

/

baroriginal

Low latency

Space efficient

✓

change 1
bit here

copy with
new bit

Added a whole data
block to change 1 bit

Fast Reads

Fast Writes ?
?

?
Copy /foo to /bar

fre
d

copy

Logical Copy in an Inode File System

33

foo

/

baroriginal

Low latency

Space efficient

✓

change 1
bit here

copy with
new bit

Added a whole data
block to change 1 bit

This is at least 4KiB
and can be more

Fast Reads

Fast Writes ?
?

?
Copy /foo to /bar

fre
d

copy

Logical Copy in an Inode File System

34

foo

/

baroriginal

Low latency

Space efficient

✓
✗

change 1
bit here

copy with
new bit

Added a whole data
block to change 1 bit

This is at least 4KiB
and can be more

Fast Reads

Fast Writes ?
?Copy /foo to /bar

fre
d

copy

Logical Copy in an Inode File System

35

foo

/

baroriginal

Low latency

Space efficient

✓
✗

Fast Reads

Fast Writes ?
?Copy /foo to /bar

fre
d

copy

Logical Copy in an Inode File System

36

foo

/

baroriginal

Low latency

Space efficient

✓
✗

Fast Reads

Fast Writes ?
?Copy /foo to /bar

no locality guarantees between data blocks

fre
d

copy

Logical Copy in an Inode File System

37

foo

/

baroriginal

Low latency

Space efficient

✓
✗

Fast Reads

Fast Writes ?
?Copy /foo to /bar

no locality guarantees between data blocks

only have locality if
the blocks are large

fre
d

copy

Logical Copy in an Inode File System

38

foo

/

baroriginal

Low latency

Space efficient

✓
✗

Fast Reads

Fast Writes ?
?Copy /foo to /bar

no locality guarantees between data blocks

only have locality if
the blocks are large

usually 4KiB too small for locality⇒fre
d

copy

Logical Copy in an Inode File System

39

foo

/

baroriginal

Low latency

Space efficient

✓
✗

Fast Reads

Fast Writes

Copy /foo to /bar

no locality guarantees between data blocks

only have locality if
the blocks are large

usually 4KiB too small for locality⇒

✗

✗

fre
d

copy

Space-Locality Tradeoff

40

Larger blocks

Better locality

Worse space efficiency

😄

😬

Space-Locality Tradeoff

41

Larger blocks

Better locality

Worse space efficiency

😄

😬

Smaller blocks

Worse locality

Better space efficiency 😄

😬

Space-Locality Tradeoff

42

Larger blocks

Better locality

Worse space efficiency

😄

😬

Smaller blocks

Worse locality

Better space efficiency 😄

😬

4KiB blocks

Too large
for space

Too small
for locality

😭

Inode Logical Copy Takeaway

43

Using a DAG to share
data is great for latency

Inode Logical Copy Takeaway

44

Challenge:
Small writes break sharing

Using a DAG to share
data is great for latency

Our Solution: Bε-DAGs

Bε-Trees

BεtrFS
Bε-DAGs

Our Solution: Bε-DAGs

46

Bε-trees have good locality and
batch together small writes

Our Solution: Bε-DAGs

47

Bε-trees have good locality and
batch together small writes

In this paper, we turn Bε-trees into
Bε-DAGs to share data between files

Bε-Trees

Bε-Trees

B A B B B

A RG A C F

B D H A B R

pivots the rest buffer

A Bε-tree is a search tree
(like a B-tree)

Bε-Trees

B A B B B

A R

/

G A C F

B D H A B R

B D H A B R

the rest buffer

A Bε-tree is a search tree
(like a B-tree)

directory tree
pivots

Bε-Trees

B A B B B

A R

/

G A C F

B D H A B R

B D H A B R

the rest buffer

A Bε-tree is a search tree
(like a B-tree)

directory tree

/orange/A
/orange/A

pivots

A Bε-tree is a search tree
(like a B-tree)

directory tree

Bε-Trees

B A B B B

A R

/

G A C F

B D H A B R

D

B D H A B R

Inserts get put in
the root bufferNew file:

/orange/D

A Bε-tree is a search tree
(like a B-tree)

directory tree

Bε-Trees

B A B B B

A R

/

G A C F

B D H A B R

D

B D H A B RD

/orange/D

Inserts get put in
the root buffer

A Bε-tree is a search tree
(like a B-tree)

directory tree

Bε-Trees

B A

Z

B B

A R

/

G A C F

B D H A B R

D

B D H A B RD

/orange/D

Inserts get put in
the root buffer

A Bε-tree is a search tree
(like a B-tree)

directory tree

Bε-Trees

B A Z B B

A R

/

G A C F

B D H A B R

D

B D H A B RDZ

/blue/Z

Inserts get put in
the root buffer

A Bε-tree is a search tree
(like a B-tree)

directory tree

Bε-Trees

B A Z

F

B

A R

/

G A C F

B D H A B R

D

B D H A B RDZ

/blue/Z

Inserts get put in
the root buffer

A Bε-tree is a search tree
(like a B-tree)

directory tree

Bε-Trees

B A Z F B

A R

/

G A C F

B D H A B R

D

FB D H A B RDZ

/orange/F

Inserts get put in
the root buffer

A Bε-tree is a search tree
(like a B-tree)

directory tree

Bε-Trees

B A Z F

B

A R

/

G A C F

B D H A B R

D

FB D H A B RDZ

/orange/F

Inserts get put in
the root buffer

A Bε-tree is a search tree
(like a B-tree)

directory tree

Bε-Trees

B A Z F B

A R

/

G A C F

B D H A B R

D

FB D H A B RDZ B

/violet/B

When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

A Bε-tree is a search tree
(like a B-tree)

directory tree When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

Bε-Trees

B A Z
F

B

A R

/

G A C F

B D H A B R

D

FB D H A B RDZ

/violet/B

B

A Bε-tree is a search tree
(like a B-tree)

directory tree When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B R

D F

FB D H A B RDZ

/violet/B

B

A Bε-tree is a search tree
(like a B-tree)

directory tree When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B R

D F

FB D H A B RDZ

/violet/B

B

L

A Bε-tree is a search tree
(like a B-tree)

directory tree When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B R

D F

FB D H A B RDZ

/green/L

B

L

L

A Bε-tree is a search tree
(like a B-tree)

directory tree When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B R

D F

FB D H A B RDZ

/green/L

B

L

L

T

A Bε-tree is a search tree
(like a B-tree)

directory tree When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B R

D F

FB D H A B RDZ

/orange/T

B

L

L

T

T

A Bε-tree is a search tree
(like a B-tree)

directory tree When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B R

D F

FB D H A B RDZ B

L

L

T

T

/orange/T

A Bε-tree is a search tree
(like a B-tree)

directory tree When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B R

D F

FB D H A B RDZ B

L

L

T

T

/orange/T

A Bε-tree is a search tree
(like a B-tree)

directory tree When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

Inserts get put in
the root buffer

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B R

D F

FB D H A B RDZ B

L

L

T

T

/orange/T

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B RD F

FB D H A B RDZ B

Inserts get put in
the root buffer

When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

A Bε-tree is a search tree
(like a B-tree)

L

L

T

T

directory tree

/orange/T

Bε-Trees

B A Z B

A R

/

G A C F

B D H A B RD F

FB D H A B RDZ B

Inserts get put in
the root buffer

When a buffer is full:
1. Pick child receiving

most messages
2. Move them to the

child’s buffer

A Bε-tree is a search tree
(like a B-tree)

L

L

T

T

directory tree

/orange/T Key Insight: Each flush applies many small changes

Logical Copy with Bε-DAGs

Logical Copy with Bε-DAGs

72

B S Z

A R LL M

A AJ H

Copy /green to /red

B

Logical Copy with Bε-DAGs

73

B S Z

A AJ H

Node covering
/green/ subtree

B

A R LL M

Copy /green to /red

Logical Copy with Bε-DAGs

74

B S Z

A AJ H B

A R LL M

Every /green/* file
is in this subtree

Node covering
/green/ subtree

Copy /green to /red

Logical Copy with Bε-DAGs

75

B S Z

A AJ H B

A R
L

M

Every /green/* file
is in this subtree

Node covering
/green/ subtree

Copy /green to /red

Logical Copy with Bε-DAGs

76

B S Z

A AJ H

Would like to logically
copy by adding this edge

B

A R LL MNode covering
/green/ subtree

Copy /green to /red

Every /green/* file
is in this subtree

Logical Copy with Bε-DAGs

77

B S Z

A AJ H

Would like to logically
copy by adding this edge

B

A R LL MNode covering
/green/ subtree

Copy /green to /red

Every /green/* file
is in this subtree

Logical Copy with Bε-DAGs

78

B S Z

A AJ H

Would like to logically
copy by adding this edge

PROBLEM:
A lookup for /red/M is going to

see /green/M in the subtree

B

A R LL MNode covering
/green/ subtree

Copy /green to /red

Every /green/* file
is in this subtree

A R LL M

Logical Copy with Bε-DAGs

79

B S Z

A AJ H B

Solution:
Pivots can include
a prefix translation

Would like to logically
copy by adding this edgeNode covering

/green/ subtree

Copy /green to /red

Every /green/* file
is in this subtree

PROBLEM:
A lookup for /red/M is going to

see /green/M in the subtree

A R LL M

Logical Copy with Bε-DAGs

80

B S Z

A AJ H B

Solution:
Pivots can include
a prefix translation

Would like to logically
copy by adding this edgeNode covering

/green/ subtree

Copy /green to /red

/red/ /green/→

Every /green/* file
is in this subtree

PROBLEM:
A lookup for /red/M is going to

see /green/M in the subtree

Logical Copy with Bε-DAGs

81

B S Z

A AJ H

Read(/red/M)

B

A R LL MNode covering
/green/ subtree

Copy /green to /red

/red/ /green/→

Logical Copy with Bε-DAGs

82

B S Z

A AJ H B

A R LL M

Read(/red/M)

Node covering
/green/ subtree

Copy /green to /red

/red/ /green/→

Logical Copy with Bε-DAGs

83

B S Z

A AJ H B

A R LL M

Read(/red/M)

Node covering
/green/ subtree

Copy /green to /red

/red/ /green/→

Logical Copy with Bε-DAGs

84

B S Z

A AJ H Read(/red/M)B

A R LL M

Read(/red/M)

Node covering
/green/ subtree

Copy /green to /red

/red/ /green/→

Logical Copy with Bε-DAGs

85

B S Z

A AJ H Read(/red/M)B

A R LL M

Read(/red/M)

Node covering
/green/ subtree

Copy /green to /red

/red/ /green/→

Logical Copy with Bε-DAGs

86

B S Z

A AJ H

Read(/green/M)

B

A R LL M

Read(/red/M)

Read(/red/M)

Node covering
/green/ subtree

Copy /green to /red

/red/ /green/→

Logical Copy with Bε-DAGs

87

B S Z

A AJ H B

A R LL M
Read(/green/M)

Read(/red/M)

Read(/red/M)

Node covering
/green/ subtree

Copy /green to /red

/red/ /green/→

Bε-DAGs and Small Writes

Bε-DAGs and Small Writes

89

B S Z

A AJ H

Make some small
writes to /red/

B

A R LL M

/red/ /green/→

Bε-DAGs and Small Writes

90

B S Z

A AJ H

B

B

A R LL M

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

91

B S Z

A AJ H

B Q

B

A R LL M

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

92

B S Z

A AJ H

B Q Z

B

A R LL M

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

93

B S Z

A AJ H

B Q Z

B

A R LL M

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

94

B S Z

A AJ H B Q ZB

A R LL M

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

95

B S Z

A AJ H
B Q Z

B

A R LL M

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

B S Z

A AJ H
B Q Z

B

Now flush with
copy-on-write

A R LL M

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

97

B S Z

A R LL M

A AJ H
B Q Z

B

A R LL M

Now flush with
copy-on-write

1. copy

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

98

B S Z

A R LL M

A AJ H
B Q Z

B

A R LL M

2. Translate
/green/ /red/→

Now flush with
copy-on-write

1. copy

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

99

B S Z

A R LL M

A AJ H
B Q Z

B

A R L M

Now flush with
copy-on-write

1. copy

2. Translate
/green/ /red/→

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

100

B S Z

A R LL M

A AJ H
B Q Z

B

A R L M

Now flush with
copy-on-write

1. copy
3. Delete

unreachable data

2. Translate
/green/ /red/→

Make some small
writes to /red/

/red/ /green/→

Bε-DAGs and Small Writes

101

B S Z

A R LL M

A AJ H
B Q Z

B

A R M

Now flush with
copy-on-write

1. copy

2. Translate
/green/ /red/→

Make some small
writes to /red/

3. Delete
unreachable data

/red/ /green/→

Bε-DAGs and Small Writes

102

B S Z

A R LL M

A AJ H
B Q Z

B

A R M

Now flush with
copy-on-write

1. copy

2. Translate
/green/ /red/→

Make some small
writes to /red/

3. Delete
unreachable data
4. Move pivot

translation

/red/ /green/→

Bε-DAGs and Small Writes

103

B S Z

A R LL M

A AJ H
B Q Z

B

A R M

Now flush with
copy-on-write

1. copy

4. Move pivot
translation

/re
d/

/g
reen/

→

2. Translate
/green/ /red/→

Make some small
writes to /red/

3. Delete
unreachable data

/re
d/

/green/

→

Bε-DAGs and Small Writes

104

B S Z

A R LL M

A AJ H
B Q Z

B

A R M

Now flush with
copy-on-write

1. copy
5. Flush

4. Move pivot
translation

2. Translate
/green/ /red/→

Make some small
writes to /red/

3. Delete
unreachable data

/re
d/

/g
reen/

→

/re
d/

/green/

→

Bε-DAGs and Small Writes

105

B S Z

A R LL M

A AJ H B

A R M

Now flush with
copy-on-write

1. copy
B Q Z

5. Flush

4. Move pivot
translation

3. Delete
unreachable data

2. Translate
/green/ /red/→

Make some small
writes to /red/

/re
d/

/g
reen/

→

/re
d/

/green/

→

Bε-DAGs and Small Writes

106

B S Z

A R LL M

A AJ H B

A R M

Now flush with
copy-on-write

1. copy
B Q Z

Applied multiple
small changes

5. Flush

4. Move pivot
translation

3. Delete
unreachable data

2. Translate
/green/ /red/→

Make some small
writes to /red/

/re
d/

/g
reen/

→

/re
d/

/green/

→

Bε-DAGs and Small Writes

107

B S Z

A R LL M

A AJ H B

A R M

Now flush with
copy-on-write

1. copy
B Q Z

Applied multiple
small changes

Broke sharing of
one node

5. Flush

4. Move pivot
translation

3. Delete
unreachable data

2. Translate
/green/ /red/→

Make some small
writes to /red/

/re
d/

/g
reen/

→

/re
d/

/green/

→

Bε-DAGs and Small Writes

108

B S Z

A R LL M

A AJ H B

A R M

Now flush with
copy-on-write

1. copy
B Q Z

Applied multiple
small changes

Broke sharing of
one node

Still sharing
rest of subtree

5. Flush

4. Move pivot
translation

3. Delete
unreachable data

2. Translate
/green/ /red/→

Make some small
writes to /red/

/re
d/

/g
reen/

→

/re
d/

/green/

→

5. Flush

Bε-DAGs and Small Writes

109

B S Z

A R LL M

A AJ H B

A R M

Make some small
writes to /red/

Now flush with
copy-on-write

1. copy
B Q Z

Applied multiple
small changes

Broke sharing of
one node

Still sharing
rest of subtree

Copy-on-Abundant-Write

4. Move pivot
translation

3. Delete
unreachable data

2. Translate
/green/ /red/→

/re
d/

/g
reen/

→

/re
d/

/green/

→

Logical Copy with Bε-DAGs

110

Space efficient

Low latency

Fast writes

Fast reads

Copy-specific General file system

Performance Goals

?

?

?

?

Logical Copy with Bε-DAGs

111

Space efficient

Low latency

Fast writes

Fast reads

Performance Goals

?

?

✓

✓

Bε -trees have large nodes

 Locality*

⇒

Copy-specific General file system

*File Systems Fated for Senescence? Nonsense, Says Science!,
Conway et al, FAST 2017

Logical Copy with Bε-DAGs

112

Space efficient

Low latency

Fast writes

Fast reads

Performance Goals

?

✓

✓

✓ Bε -trees have large nodes

Copy-on-Abundant-Write

Copy-specific General file system

 Locality*

⇒

*File Systems Fated for Senescence? Nonsense, Says Science!,
Conway et al, FAST 2017

Reducing Copy Latency
in Bε-DAGs

Reducing Copy Latency in Bε-DAGs

V

A A

LG L

ZAU

S J

C R

Copy /green to /violet

Reducing Copy Latency in Bε-DAGs

V

A A

LG L

ZAU

S J

C R

1. Flush messages to node
covering /green subtree

Copy /green to /violet

Reducing Copy Latency in Bε-DAGs

V

A A

LG

ZAU

S J

C RL

1. Flush messages to node
covering /green subtree

Copy /green to /violet

Reducing Copy Latency in Bε-DAGs

V

A A

LG

ZAU

S J

C R

L

1. Flush messages to node
covering /green subtree

Copy /green to /violet

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

1. Flush messages to node
covering /green subtree

Copy /green to /violet

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

G
O

TO

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

It functions as a pivot
including prefix translation

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

When a lookup finds
a GOTO message, it
skips to the target

It functions as a pivot
including prefix translation

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

When a lookup finds
a GOTO message, it
skips to the target

Read(/violet/H)

It functions as a pivot
including prefix translation

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

When a lookup finds
a GOTO message, it
skips to the target

It functions as a pivot
including prefix translation

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

Read(/violet/H)

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

When a lookup finds
a GOTO message, it
skips to the target

It functions as a pivot
including prefix translation

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

Read(/violet/H)

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

When a lookup finds
a GOTO message, it
skips to the target

It functions as a pivot
including prefix translation

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

Read(/violet/H)

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

When a lookup finds
a GOTO message, it
skips to the target

The GOTO translates into
Read(/green/H)

It functions as a pivot
including prefix translation

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

Read(/violet/H)

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

When a lookup finds
a GOTO message, it
skips to the target

It functions as a pivot
including prefix translation

The GOTO translates into
Read(/green/H)

/v
io

le
t/

/g
re

en
/

→

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

Read(/violet/H)

Reducing Copy Latency in Bε-DAGs

V

B D
H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

When a lookup finds
a GOTO message, it
skips to the target

It functions as a pivot
including prefix translation

The GOTO translates into
Read(/green/H)

/v
io

le
t/

/g
re

en
/

→

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

Read(/violet/H)

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

D

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

D Z

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

D Z

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/v
io

le
t/

/g
re

en
/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO
D Z

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/
/green/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO
D Z

E

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/
/green/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO
D Z

E N

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/
/green/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO
D Z

E N E

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/
/green/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO
D Z

E N E

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/
/green/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO
D Z E N E

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/
/green/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO D
Z E N

E

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/
/green/

→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

D

Z E N

E

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/ /green/→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

D

Z E N

E

When the GOTO reaches the height of
its target + 1, it becomes a real pivot

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/ /green/→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

G
O

TO

D

Z E N

E

When the GOTO reaches the height of
its target + 1, it becomes a real pivot

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/ /green/→

Reducing Copy Latency in Bε-DAGs

V

B D H

A A

LG

L

ZAU

S J

C R

GOTO
A GOTO message changes

the structure of the tree

D

Z E N

E

When the GOTO reaches the height of
its target + 1, it becomes a real pivot

A

1. Flush messages to node
covering /green subtree

2. Insert a GOTO message

Copy /green to /violet

It functions as a pivot
including prefix translation

/violet/ /green/→

Logical Copy with Bε-DAGs

145

Space efficient

Low latency

Fast writes

Fast reads

Performance Goals

?

✓

✓

✓ Bε -trees have large nodes

Copy-on-Abundant-Write

Copy-specific General file system

 Locality*

⇒

*File Systems Fated for Senescence? Nonsense, Says Science!,
Conway et al, FAST 2017

Logical Copy with Bε-DAGs

146

Space efficient

Low latency

Fast writes

Fast reads

Performance Goals

✓

✓

✓ Bε -trees have large nodes

Copy-on-Abundant-Write

Copy-specific General file system

 Locality*

⇒

*File Systems Fated for Senescence? Nonsense, Says Science!,
Conway et al, FAST 2017

GOTO messages

✓

Evaluation

Space Amplification and Fragmention

148
gr

ep
 ti

m
e

(s
ec

on
ds

)

0

2

4

6

8

Logical copy number
0 1 2 3 4 5 6 7 8

BTRFS XFS ZFS BetrFS

Sp
ac

e
Am

pl
ifi

ca
tio

n

0

100

200

300

BTRFS XFS ZFS BetrFS

Init: 64 4MiB files with random data.
Each round: logically copy all files, then change 16B in each file (1KiB total)

Fragmentation
measured by timing a grep over the file system

Space Amplification
additional file system size / added data (1KiB)

Lo
w

er
 is

 B
et

te
r

Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

 4GiB RAM
500GB 7200 RPM SATA disk

Space Amplification and Fragmention

149
gr

ep
 ti

m
e

(s
ec

on
ds

)

0

2

4

6

8

Logical copy number
0 1 2 3 4 5 6 7 8

BTRFS XFS ZFS BetrFS

Sp
ac

e
Am

pl
ifi

ca
tio

n

0

100

200

300

BTRFS XFS ZFS BetrFS

Init: 64 4MiB files with random data.
Each round: logically copy all files, then change 16B in each file (1KiB total)

Fragmentation
measured by timing a grep over the file system

Space Amplification
additional file system size / added data (1KiB)

Lo
w

er
 is

 B
et

te
r

Low space amplification
and low fragmentation

Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

 4GiB RAM
500GB 7200 RPM SATA disk

Copy Latency

150

tim
e

(s
ec

on
ds

)

0

0.25

0.5

0.75

1

Logical copy number
0 1 2 3 4 5 6 7 8

BTRFS XFS ZFS BetrFS

Init: 64 4MiB files with random data.
Each round: logically copy all files, then change 16B in each file (1KiB total)

Copy Latency
time to perform the copy

Lo
w

er
 is

 B
et

te
r

Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

 4GiB RAM
500GB 7200 RPM SATA disk

Copy Latency

151

tim
e

(s
ec

on
ds

)

0

0.25

0.5

0.75

1

Logical copy number
0 1 2 3 4 5 6 7 8

BTRFS XFS ZFS BetrFS

Init: 64 4MiB files with random data.
Each round: logically copy all files, then change 16B in each file (1KiB total)

Copy Latency
time to perform the copy

Low latency

Lo
w

er
 is

 B
et

te
r

Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

 4GiB RAM
500GB 7200 RPM SATA disk

General File System Microbenchmarks

152

Th
ro

ug
hp

ut
 (M

iB
/s

ec
)

0

50

100

150

Sequential Read Sequential Write

ext4 BTRFS XFS ZFS BεtrFS 0.4 BεtrFS 0.5

Ti
m

e
(s

ec
on

ds
)

0

600

1200

1800

2400

3000

Random Read Random Write

Lo
w

er
 is

 B
et

te
r

H
ig

he
r i

s B
et

te
r

BεtrFS 0.5
5.5 seconds

Application Benchmarks

153

Ti
m

e
(s

ec
on

ds
)

0

35

70

105

140

git clone git diff tar untar

ext4 BTRFS XFS ZFS BεtrFS 0.4 BεtrFS 0.5 BεtrFS 0.5 (copy)

Ba
nd

w
id

th
 (M

iB
/s

ec
)

0

20

40

60

rsync -in-place rsync rename

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0

40

80

120

160

IMAP

H
ig

he
r i

s B
et

te
r

H
ig

he
r i

s B
et

te
r

Lo
w

er
 is

 B
et

te
r

Technical Conclusions

154

Bε-DAGs transform copy-on-write into copy-on-abundant-write

• Gives strong bounds on space amplification

• Preserves locality, even with small writes

• Exploits Bε-tree’s batching and flushing

Bε-DAGs preserve the fast reads and writes of Bε-trees

• Preserve logarithmic tree height and query cost

• Preserve asymptotic costs of inserts and updates

Copies are fast and cheap

• GOTO messages enable low-latency DAG mutations

• Total work of copies is O(tree height)

Evaluation Conclusions

155

BetrFS with Bε-DAGs has strong copy performance in practice

• Low space amplification

• Low latency copying

• Good locality

Bε-DAGs preserve BetrFS’s performance gains on other operations

• Fast random writes

• Good sequential I/O throughput

• No aging

• Strong across-the-board application benchmark performance

Thank you!

156

