How to Copy Files

Yang Zhan'2, Alex Conway3:4, |an Groombridge?>, Yizheng Jiao’,
Nirjhar Mukherjee?l, Michael A. Bender?, Martin Farach-Colton3,

William Jannen’, Rob Johnson4, Donald E. Porter?, Jun Yuan>

NY BRo
0 2>

Copying is Ubiquitous and Important

cp -r

container instantiation
vmrun start

Copying

Physical Copy

Copying

Physical Copy

High Latency

High Space Use

Existing Logical Copy Implementations

BTRFS
Leverages the underlying copy-on-write B-tree to implement
cp --reflink
XFS
Uses an update-in-place B-tree but supports sharing data
blocks with copy-on-write viacp --reflink
ZFS

Implements a limited version of copy-on-write copying via
zfs clone

Copying

Physical Copy Copy on Write

High Latency

High Space Use

Copying

Physical Copy Copy on Write

High Latency Low Latency
High Space Use Better Space Use

High Fragmentation

Copying

Physical Copy Copy on Write

High Latency Low Latency

High Space Use Better Space Use

High Fragmentation

Space Amplification and Fragmention Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

AGiB RAM
Init: 64 4MiB files with random data. 500GB 7200 RPM SATA disk

Each round: logically copy all files, then change 16B in each file (1KiB total)

Space Amplification and Fragmention Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

4GiB RAM
Init: 64 4MiB files with random data. >00GB 7200 RPM SATA disk
Each round: logically copy all files, then change 16B in each file (1KiB total)

300

c o
O b
S 200 7
2 m
O

S L
< -
® 100 L
S S
O

: 3

0

I BTRFS XFS [ZFS

Space Amplification
additional file system size / added data (1KiB) 10

Space Amplification and Fragmention Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

AGiB RAM
Init: 64 4MiB files with random data. 500GB 7200 RPM SATA disk

Each round: logically copy all files, then change 16B in each file (1KiB total)

it BTRFS XFS A& ZFS
300 38
-
c —
= 2 S g
(v
200 QD O
- B
= S 2 4
S 0 5 |
§ ; i’;‘ 2 ._.__—I—-I—l—l’.".
7 3 o
0 0
B BTRFS XFS B ZFS 0 1 2 3 4 S 6 / 8
Logical copy number
Space Amplification Fragmentation

additional file system size / added data (1KiB) measured by timing a grep over the latest copy 11

Space Amplification and Fragmention Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

4GiB RAM
500GB 7200 RPM SATA disk

y A | A R & e Iy Mol

vith random data.
all files, then change 16B in each file (1KiB total)

Init
£, Have large space

amplification

i BTRFS XFS A& ZFS
300 8
-
A B
g 200 ﬂCIJ) S
3 0 =4
® 100 =
§ % > 2 — n =8 —8—p—8—H
75 O 5
0 0
B BTRFS XFS B ZFS 0 1 2 3 4 5 6 7 8
Logical copy number
Space Amplification Fragmentation

additional file system size / added data (1KiB) measured by timing a grep over the latest copy 10

Space Amplification and Fragmention Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

4GiB RAM
500GB 7200 RPM SATA disk

y A | A R & e Iy Mol

vith random data.
all files, then change 16B in each file (1KiB total)

Init
£, Have large space

amplification

B BTRFS XFS A 7ZFS
300 o
- T Or high —_—
O - .
8 Hog o fragmentation \
= o0 w
3 K =4
2 100 o | =
§ < > 2 - n 8 8—8 §—8—*
N 3 o
0 0
B BTRFS XFS B ZFS 0 1 2 3 4 o 6 / 8
Logical copy number
Space Amplification Fragmentation

additional file system size / added data (1KiB) measured by timing a grep over the latest copy 13

Copy Performance Goals

14

Copy Performance Goals

Space efficient

Low latency

Specific to Copying

15

Copy Performance Goals

Space efficient

Low latency

Specific to Copying

General file system

10

Copy Performance Goals

Space efficient

Low latency

Specific to Copying

Locality

General file system

17

Contributions of this Paper

A high performance logical copy implementation...

13

Contributions of this Paper

A high performance logical copy implementation...

In BetrFS, which leverages the properties of Copy-on-Write Be-trees

19

Contributions of this Paper

A high performance logical copy implementation...

In BetrFS, which leverages the properties of Copy-on-Write Be-trees

Copy-specific General file system

20

Contributions of this Paper

A high performance logical copy implementation...

In BetrFS, which leverages the properties of Copy-on-Write Be-trees

Space efficient ‘/ ‘/

Copy-specific General file system

21

What is the Challenge of
Logical Copy?

Example: Logical copy in an
inode file system

Logical Copy in an Inode File System

Copy /foo to /bar

24

Logical Copy in an Inode File System

Copy /foo to /bar

/
. «<— directory inode

O

fred

R
/1L AN

BEE BBEBE ——— datablock

. «— file inode

20

Logical Copy in an Inode File System

Copy /foo to /bar

20

Logical Copy in an Inode File System

Copy /foo to /bar

original

2/

Logical Copy in an Inode File System

Copy /foo to /bar Low latency 9 ?
Space efficient ? ?

COopy

original

/

23

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency {

?
Space efficient ? ?

COopy

original

/

29

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency {

?
Space efficient ? ?

COopy

original

/

AEE EEN
1

change 1
bit here

30

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency {

?
Space efficient ? ?

COopy

original o

N

LTV

ANE EEE [I

/

change 1 copy with
bit here ~ new bit

31

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency (

?
Space efficient ? ?

COopy

original b

N

/

Added a whole data

M« \ block to change 1 bit

ANE EEE [I

change 1 copy with
bit here new bit

32

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency (

?
Space efficient ? ?

COopy
/

original ©

Added a whole data
M« \ block to change 1 bit

This is at least 4KiB

change 1 copy with and can be more
bit here new bit

33

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency (

renes) ?
e) 2

Space efficient X

original ©

COopy
\

/

Added a whole data

M« \ block to change 1 bit

ANE EEE [I

R This is at least 4KiB

change 1 copy with and can be more
bit here new bit

34

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency (

renes) ?
e) 2

Space efficient X

original copy

/

30

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency (

renes) ?
e) 2

Space efficient X

original b

N

LTV

EEE EEE [
L S W R

no locality guarantees between data blocks

COopy
/

36

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency (

renes) ?
e) 2

Space efficient X

6
original 0 o copy
N e
M« \ only have locality it
BEEE BEE [the blocks are large

Pt vt 7 J
no locality guarantees between data blocks

3/

Logical Copy in an Inode File System

COpy /fOO to /bar LOW Iatency (

renes) ?
e) 2

Space efficient X

o S,
original b ¢ copy . .
usually 4KiB = too small for localit
. o / s
M« \ only have locality if J
the blocks are large
EEE EBEER || S

Pt vt 7 J
no locality guarantees between data blocks

33

Logical Copy in an Inode File System

COpy /foo to /bar | ow |atency J X
x

Space efficient X

o S,
original b ¢ copy . .
usually 4KiB = too small for localit
. o / s
M« \ only have locality if J
the blocks are large
EEE EBEER || S

Pt vt 7 J
no locality guarantees between data blocks

39

Space-Locality Tradeoft

Larger blocks

Better locality <

Worse space efficiency (&)

40

Space-Locality Tradeoft

Larger blocks Smaller blocks

A B R
= DE;

Better locality = Worse locality =
Worse space efficiency (&) Better space efficiency (&

41

Space-Locality Tradeoft

Larger blocks Smaller blocks
. . 4KiB blocks .

Too large Too small |
D D g i D

for space for locality

%)

Better locality </ Worse locality =
Worse space efficiency (&) Better space efficiency (&

42

Inode Logical Copy Takeaway

k
b

Using a DAG to share
data is great for latency

43

Inode Logical Copy Takeaway

k
b

Using a DAG to share
data is great for latency

O
O §\
o
\ 4
\

a
\
[

2 A N

Challenge:
Small writes break sharing

44

Our Solution: Be-DAGs

Our Solution: Be-DAGs

|

< | AW
5o R
o FEE

Be-trees have good locality and
batch together small writes

46

Our Solution: Be-DAGs

|

i | N
5 I
i F

Be-trees have good locality and
batch together small writes

\ /
8o "
/N

In this paper, we turn Be-trees into
Be-DAGs to share data between files

47

Be-Trees

A Be-tree is a search tree

(like a B-tree) pivots the rest buffer

2 4

B
/ l N\
sa se B
"I '

Be-Trees

Be-Trees

A Be-tree is a search tree
(like a B-tree)

pivots the rest buffer

directory tree
/

A7 NN

|

1IN

110
BD

/orange/A
/orange/A

Be-Trees

A Be-tree is a search tree Inserts get putin

(like a B-tree) New file: the root buffer
/orange/D

directory tree

Be-Trees

directory tree

7 LN

0 B

/| \\\

W

W

. RAR

BDH ABD R

T
/orange/D

A Be-tree is a search tree
(like a B-tree)

Inserts get put in
the root buffer

Be-Trees

directory tree

7 LN

0 B

/| \\\

W

W

. RAR

BDH ABD R

T
/orange/D

A Be-tree is a search tree
(like a B-tree)

Inserts get put in
the root buffer

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree

T
/orange/F

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree

T
/orange/F

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree When a buffer is full:
. Pick child receiving

most messages
. Move them to the

child’s buffer

/violet/B

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree When a buffer is full:
. Pick child receiving

most messages
. Move them to the

child’s buffer

/violet/B

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree When a buffer is full:
. Pick child receiving

most messages
. Move them to the

child’s buffer

/violet/B

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) L the root buffer

directory tree When a buffer is full:
. Pick child receiving

most messages
. Move them to the

child’s buffer

/violet/B

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

When a buffer is full:
1. Pick child receiving

B most messages
@ 2. Move them to the

child’s buffer

directory tree
/

rd ' N\
N se. ae’" B
RRRER "I '

LABDFR B

T
/green/L

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

When a buffer is full:
1. Pick child receiving

B most messages
@ 2. Move them to the

child’s buffer

directory tree
/

rd ' N\
N se. ae’" B
RRRER "I '

LABDFR B

T
/green/L

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree When a buffer is full:
. Pick child receiving

most messages
. Move them to the

child’s buffer

T
/orange/T

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree When a buffer is full:
. Pick child receiving

most messages
. Move them to the

child’s buffer

T
/orange/T

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree When a buffer is full:
. Pick child receiving

most messages
. Move them to the

child’s buffer

T
/orange/T

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree When a buffer is full:
. Pick child receiving

most messages
. Move them to the

child’s buffer

T
/orange/T

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree When a buffer is full:
. Pick child receiving

most messages
. Move them to the

child’s buffer

T
/orange/T

Be-Trees

A Be-tree is a search tree Inserts get putin
(like a B-tree) the root buffer

directory tree When a buffer is full:

. Pick child receiving
/ most messages
2. Move them to the

child’s buffer

SN IE- T
e e

N N

 RRRARA B

LABDFRT B

T
/orange/T | | Key Insight: Each flush applies many small changes

/0 IN

|1
BD

Logical Copy with Be-DAGs

Logical Copy with Bs-DAGs

Copy /green to /.

/

\
o8 "
/

\

\

(2

Logical Copy with Bs-DAGs

Copy /green to /.

/ \

Node covering ‘ m
/green/ subtree (L

73

Logical Copy with Bs-DAGs

Copy /green to /.

/ \

Node covering ‘ m
/green/ subtree (L

Every /green/* file
is in this subtree

—

4

Logical Copy with Bs-DAGs

Copy /green to /.

/ \

Node covering ‘ m
/green/ subtree (L

\

Every /green/* file
is in this subtree

—

l4s

Logical Copy with Bs-DAGs

Copy /green to /.

/ \

\ / Would like to logicall
Node coveing (AR e e
/green/ subtree o Py BY 9 9

Every /green/* file
is in this subtree

—_

/0

Logical Copy with Bs-DAGs

Copy /green to /.

/ \

|
I

Nod : \ /\ Would like to logically
ode covering A R 7 - el thie o
/green/ subtree ‘ m cOpy Py adding this €dg

\

Every /green/* file
is in this subtree

—_

la4

Logical Copy with Bs-DAGs

PROBLEM:
A lookup for /-/M is going to
see /green/M in the subtree

Copy /green to /.

/ \

|
I

Nod : \ /\ Would like to logically
ode covering A R 7 i thie od
/green/ subtree ‘ m cOpy Py adding this edge

\

Every /green/* file
is in this subtree

—

/3

Logical Copy with Bs-DAGs

/ \

\ /s

PROBLEM:
A lookup for /-/M is going to
see /green/M in the subtree

Copy /green to /.

Would like to logically

Node covering ‘ m y | .
7 = by adding this ed
/green/ subtree (LI copy Py adding this edge
/ \ Solution:
Pivots can include

Every /green/* file
is in this subtree

— a prefix translation

79

Logical Copy with Bs-DAGs

PROBLEM:
.- A lookup for /-/M is going to

see /green/M in the subtree

Copy /green to /.

Would like to logically

Node covering copy by adding this edge

/green/ subtree

Solution:
Pivots can include

Every /green/* file a prefix translation

Is in this subtree
30

Logical Copy with Bs-DAGs

Copy /green to /.

/ \

\ //./—>/green/

Node covering .

/green/ subtree @@ m
/N

31

Logical Copy with Bs-DAGs

08 NN recmm

Copy /green to /.

/ \

\ //./—>/green/

Node covering .

/green/ subtree @@ m
/N

82

Logical Copy with Bs-DAGs

08 NN recE

\

Copy /green to /.

/

\ //./—>/green/

Node covering . ‘ m

/green/ subtree M
/N

33

Logical Copy with Bs-DAGs

Node covering
/green/ subtree

34

Logical Copy with Bs-DAGs

Node covering
/green/ subtree

35

Logical Copy with Bs-DAGs

Node covering

/green/ subtree Read(/green/M)

36

Logical Copy with Bs-DAGs

Node covering

/green/ subtree Read(/green/M)

3/

Be-DAGs and Small Writes

Be-DAGs and Small Writes

Make some small

writes to /-/

CY I
\

A R
D

/

\

\

/

39

Be-DAGs and Small Writes

Make some small

writes to /-/

CY I
\

A R
D

/

\

\

/

90

Be-DAGs and Small Writes

Make some small

writes to /-/

CY I
\

A R
D

/

\

\

/

91

Be-DAGs and Small Writes

Make some small

writes to /-/

CY I
\

A R
D

/

\

\

/

92

Be-DAGs and Small Writes

Make some small

writes to /-/

CY I
\

A R
D

/

\

\

/

93

Be-DAGs and Small Writes

Make some small

writes to /-/

CY I
\

A R
D

/

\

\

/

94

Be-DAGs and Small Writes

Make some small

writes to /-/

CY I
\

A R
D

/

\

\

/

95

Be-DAGs and Small Writes

Make some small Now flush with
writes to /-/ copy-on-write

\ //./—>/g reen/

A R
A

/N

Be-DAGs and Small Writes

Now flush with
copy-on-write

Make some small

Q7

Be-DAGs and Small Writes

Now flush with
copy-on-write

Make some small

2. Translate

93

Be-DAGs and Small Writes

Make some small Now flush with
writes to /-/ copy-on-write

2. Translate

/green/— /./

88

Be-DAGs and Small Writes

Make some small Now flush with
writes to /-/ copy-on-write

2. Translate

/green/— /./

3. Delete
unreachable data

100

Be-DAGs and Small Writes

Make some small Now flush with
writes to /-/ copy-on-write

2. Translate

/green/— /./

3. Delete
unreachable data

101

Be-DAGs and Small Writes

Make some small Now flush with
writes to /-/ copy-on-write

2. Translate

/green/— /./

3. Delete
unreachable data

4. Move pivot
translation

102

Be-DAGs and Small Writes

Now flush with
copy-on-write

Make some small

2. Translate

/green/— /./

3. Delete
unreachable data

translation

103

Be-DAGs and Small Writes

Make some small Now flush with
' copy-on-write

.. 2 Translate

S, FIUShl /green/— /./

‘ 3. Delete

unreachable data
4. Move pivot

translation

104

Be-DAGs and Small Writes

Make some small Now flush with
' copy-on-write

\

S, FIUShl /green/— /./

2. Translate

‘ 3. Delete

unreachable data
4. Move pivot
translation

105

Be-DAGs and Small Writes

Make some small Now flush with
' copy-on-write

Applied multiple
small changes

2. Translate

/green/— /./

3. Delete
unreachable data

4. Move pivot
translation

106

Be-DAGs and Small Writes

Make some small Now flush with
' copy-on-write

Applied multiple
small changes

2. Translate

Broke sharing of

unreachable data

translation

107

Be-DAGs and Small Writes

Now flush with
copy-on-write

Make some small

writes to /-/

Applied multiple
small changes

2. Translate

Broke sharing of
one node 3. Delete

unreachable data

4. Move pivot

Still sharing
rest of subtree

translation

103

Be-DAGs and Small Writes

Now flush with
copy-on-write

Copy-on-Abundant-Write

Applied multiple
small changes

2. Translate

Broke sharing of
one hode 3. Delete

unreachable data

4. Move pivot

Still sharing
rest of subtree

translation

109

Logical Copy with Bs-DAGs

Performance Goals

Copy-specific General file system

110

Logical Copy with Bs-DAGs

Performance Goals

de?
o ™
e \?'

o1
Space efficient ? %6’“66 Fast writes ‘/

roca\.\‘\r

Low latency ? 2% Fast reads ‘/

Copy-specific General file system

*File Systems Fated for Senescence? Nonsense, Says Science!,
Conway et al, FAST 2017 111

Logical Copy with Bs-DAGs

Performance Goals

. de°
xe 0

da(\’i’\N ¢ \o¥ o° "

P\\o\“\ f'\\a\|€
o w,o(\’ Space efficient ‘/ %&“ees Fast writes ‘/
X
,\,off‘)\.\&\J
Low latency ? = Fast reads ‘/
Copy-specific General file system

*File Systems Fated for Senescence? Nonsense, Says Science!,
Conway et al, FAST 2017
112

Reducing Copy Latency
in Be-DAGs

Reducing Copy Latency in Be-DAGs

Copy /green to /

/“ I-
l-

/ \

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node

/

/ \

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node \

/(o
covering /green subtree .E" .-
/ \

—
oo .

o8
/

~—

/ \
s
/ VN

\

Reducing Copy Latency in Be-DAGs

1. Flush messages to node / { \

Covering /green s ." .-

— / \ / \ ~—
oo | 8
AlA L

@

/N

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node

Coverlng /green s .- .-

/

s
/

\

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree é}.

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

It functions as a pivot
including prefix translation

Reducing Copy Latency in Be-DAGs

Copy /green to / When a lookup finds

a GOTO message, it
skips to the target

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

It functions as a pivot
including prefix translation

Reducing Copy Latency in Be- D

Copy /green to /

When a lookup finds
a GOTO message, it
skips to the target

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

It functions as a pivot
including prefix translation

Reducing Copy Latency in Be- D

Copy /green to /

When a lookup finds
a GOTO message, it
skips to the target

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

It functions as a pivot
including prefix translation

Reducing Copy Latency in Bs- D

Read(/

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

When a lookup finds
a GOTO message, it
skips to the target

It functions as a pivot
including prefix translation

Reducing Copy Latency in Bs- D

Read(/

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

When a lookup finds
a GOTO message, it
skips to the target

It functions as a pivot
including prefix translation

Reducing Copy Latency in Bs- D

Read(/

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

When a lookup finds
a GOTO message, it
skips to the target

The GOTO translates into
including prefix translation Read(/green/H)

It functions as a pivot

Reducing Copy Latency in Be- D

Copy /green to /

When a lookup finds
a GOTO message, it
skips to the target

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

v

:

The GOTO translates into
Read(/green/H)

It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be- D

Copy /green to /

When a lookup finds
a GOTO message, it
skips to the target

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

v

The GOTO translates into
Read(/green/H)

It functions as a pivot

H
including prefix translation w

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes

the structure of the tree ‘
@
It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes

the structure of the tree ‘
@
It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes

the structure of the tree ‘
@
It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

‘

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes

the structure of the tree
@
It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes

the structure of the tree
@
It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes

the structure of the tree
@
It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes

the structure of the tree
@
It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes

the structure of the tree
@
It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes

the structure of the tree ‘
@
It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

s—

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

4

It functions as a pivot

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

/M/ —/green/

When the GOTO reaches the height of
its target + 1, it becomes a real pivot

. ‘

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

/M/ —/green/

When the GOTO reaches the height of
its target + 1, it becomes a real pivot

. ‘

including prefix translation m

Reducing Copy Latency in Be-DAGs

Copy /green to /

1. Flush messages to node
covering /green subtree
2. Insert a GOTO message

GOTO

A GOTO message changes
the structure of the tree

v f
@

When the GOTO reaches the height of
its target + 1, it becomes a real pivot

It functions as a pivot

including prefix translation m

Logical Copy with Bs-DAGs

Performance Goals

. de°
xe 0

da(\’i’\N ¢ \o¥ o° "

P\\o\“\ f'\\a\|€
o w,o(\’ Space efficient ‘/ %&“ees Fast writes ‘/
X
,\,off‘)\.\&\J
Low latency ? = Fast reads ‘/
Copy-specific General file system

*File Systems Fated for Senescence? Nonsense, Says Science!,
Conway et al, FAST 2017
145

Logical Copy with Bs-DAGs

Performance Goals

. de°
xe 0
a da(\’i’\N ¢ o \o¥ o°)
s » o2 .
(;OPY Space efficient ‘/ %&“e Fast writes ‘/
S
message ~ Oca\'\‘\r
GO"O Low latency ‘/ 2% Fast reads ‘/
Copy-specific General file system

*File Systems Fated for Senescence? Nonsense, Says Science!,
Conway et al, FAST 2017
140

Evaluation

Space Amplification and Fragmention Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

AGiB RAM
Init: 64 4MiB files with random data. 500GB 7200 RPM SATA disk

Each round: logically copy all files, then change 16B in each file (1KiB total)
3 BTRFS XFS & ZFS BetrFS

300 8
-
5 7
3 O S
S-iE) 200 0 S
o 9
=) - 4
® 100 =
g S O 2 a8 —8—8—8F—8
N O o
—1
0 0
B BTRFS XFS M ZFS BetrFS o 1 2 3 4 5 6 7 8
Logical copy number
Space Amplification Fragmentation

additional file system size / added data (1KiB) measured by timing a grep over the file system 148

Space Amplification and Fragmention Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

4GiB RAM

Init: 64 4MiB files with random data. >00GB 7200 RPM SATA disk
Each round: logically copy all files, then change 16B in each file (1KiB total)

& BTRFS XFS #& ZFS BetrFS

300 = 8

S Low space ampilification
M
g %0 and low fragmentation
Q.
<% : qEJ) /k
2 100 O =
8 % o 2 ._.———I——.—H’.’.
0p) & ®)

0 0

B BTRFS XFS M ZFS [BetrFS o 1 2 3 4 5 6 7 8
Logical copy number
Space Amplification Fragmentation

additional file system size / added data (1KiB) measured by timing a grep over the file system 149

Co PY Latency Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

4GiB RAM
Init: 64 4MiB files with random data. >00GB 7200 RPM SATA disk
Each round: logically copy all files, then change 16B in each file (1KiB total)

& BTRFS XFS & ZFS BetrFS

-
o
+ - 0.75
- S

S
< ® 0.5
O Py
2 =
> = 0.25 H/._./._./I—l
]

0

0 1 2 3 4 5 6 / 3

Logical copy humber

Copy Latency
time to perform the copy 150

Co PY Latency Dell Optiplex 790
4-core 3.40 GHz Intel Core i7 CPU

4GiB RAM

Init: 64 4MiB files with random data. >00GB 7200 RPM SATA disk
Each round: logically copy all files, then change 16B in each file (1KiB total)

& BTRFS XFS & ZFS BetrFS

-
9
+ - 0.75
N 9

3
L @ 0.5
O °
2 £ Low latency
—

0

0 1 2 3 4 5 6 / 3

Logical copy humber

Copy Latency
time to perform the copy 151

General File System Microbenchmarks

ext4 | BTRFS XFS M zZFS M BetrFS0.4 [BetrFS 0.5
150 -
2 QO
= 100 m
< A2
2 .
% 50 g
= O)
— 0 I
Sequential Read Sequential Write
3000 “
Q
% 2400 i
2 BetrFS 0.5
9 1800
3 I I 5.5 seconds .‘L’
- 1200 .
= ()
= 600 =
O
0 —

Random Read Random Write 152

Application Benchmarks

ext4 | BTRFS XFS B ZFS B BetrFS 0.4 [BetrFS 0.5 B BetrFS 0.5 (copy)
140

Time (seconds)
—h
~)
) @)

o0
O1

= g ualn n Inlls S [—

git clone git diff untar

rsync -in-place rsync rename IMAP

o
o

AN

o
N
N
o

N

(@)
N
(@)

Bandwidth (MiB/sec)
Higher is Better
Throughput (ops/sec)
00)

)

Lower is Better

Higher is Better

163

Technical Conclusions

Bs-DAGs transform copy-on-write into copy-on-abundant-write
® Gives strong bounds on space amplification
® Preserves locality, even with small writes
® Exploits Be-tree's batching and flushing
B=-DAGs preserve the fast reads and writes of Be-trees
® Preserve logarithmic tree height and query cost
® Preserve asymptotic costs of inserts and updates
Copies are fast and cheap
® GOTO messages enable low-latency DAG mutations

® Total work of copies is O(tree height)
154

Evaluation Conclusions

BetrFS with Bs-DAGs has strong copy performance in practice
® | ow space amplification
® |ow latency copying

® Good locality

Bs-DAGs preserve BetrFS’s performance gains on other operations
® Fast random writes
® Good sequential I/0 throughput
® No aging

® Strong across-the-board application benchmark performance
155

Thank you!

The CAW Awakens

S

; /,,/«/e‘“ R i,\\\\\\\\ S
e
—— N\\
— . \\

- -
-

,
4 /////

. . . ok
SPFERRONY Lol

BettFS Episode V:

Attack of the Clones

O’Really? betrfs.org

156

