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Copying is Ubiquitous and Important

cp -r

container instantiation
vmrun start
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Existing Logical Copy Implementations

BTRFS
Leverages the underlying copy-on-write B-tree to implement
cp --reflink
XFS
Uses an update-in-place B-tree but supports sharing data
blocks with copy-on-write viacp --reflink
ZFS

Implements a limited version of copy-on-write copying via
zfs clone
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What is the Challenge of
Logical Copy?



Example: Logical copy in an
inode file system
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Inode Logical Copy Takeaway
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Our Solution: Be-DAGs
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Be-DAGs to share data between files
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Be-Trees

A Be-tree is a search tree Inserts get putin
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Logical Copy with Bs-DAGs
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Logical Copy with Bs-DAGs

PROBLEM:
.- A lookup for /-/M is going to

see /green/M in the subtree

Copy /green to /.
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Evaluation
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General File System Microbenchmarks
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Application Benchmarks
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Technical Conclusions

Bs-DAGs transform copy-on-write into copy-on-abundant-write
® Gives strong bounds on space amplification
® Preserves locality, even with small writes
® Exploits Be-tree's batching and flushing
B=-DAGs preserve the fast reads and writes of Be-trees
® Preserve logarithmic tree height and query cost
® Preserve asymptotic costs of inserts and updates
Copies are fast and cheap
® GOTO messages enable low-latency DAG mutations

® Total work of copies is O(tree height)
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Evaluation Conclusions

BetrFS with Bs-DAGs has strong copy performance in practice
® | ow space amplification
® |ow latency copying

® Good locality

Bs-DAGs preserve BetrFS’s performance gains on other operations
® Fast random writes
® Good sequential I/0 throughput
® No aging

® Strong across-the-board application benchmark performance
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