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BTRFS

XFS

ZFS

Leverages the underlying copy-on-write B-tree to implement 
cp --reflink 

Uses an update-in-place B-tree but supports sharing data 
blocks with copy-on-write via cp --reflink

Implements a limited version of copy-on-write copying via 
zfs clone
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Space Amplification and Fragmention
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Init:                64 4MiB files with random data. 
Each round: logically copy all files, then change 16B in each file (1KiB total)

Dell Optiplex 790 
4-core 3.40 GHz Intel Core i7 CPU 

 4GiB RAM 
500GB 7200 RPM SATA disk
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Init:                64 4MiB files with random data. 
Each round: logically copy all files, then change 16B in each file (1KiB total)

Fragmentation 
measured by timing a grep over the latest copy

Space Amplification 
additional file system size / added data (1KiB)
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Space efficient

Low latency

Fast writes

Fast reads

General file systemSpecific to Copying

Locality
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A high performance logical copy implementation…
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A high performance logical copy implementation…

In BεtrFS, which leverages the properties of Copy-on-Write Bε-trees
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Space efficient

Low latency

Fast writes

Fast reads

Copy-specific General file system

A high performance logical copy implementation…

In BεtrFS, which leverages the properties of Copy-on-Write Bε-trees
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Space efficient

Low latency

Fast writes

Fast reads

Copy-specific General file system

✓

✓

✓

✓

A high performance logical copy implementation…

In BεtrFS, which leverages the properties of Copy-on-Write Bε-trees



What is the Challenge of 
Logical Copy?



Example: Logical copy in an  
inode file system
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Low latency

Space efficient
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?Copy /foo to /bar
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Space efficient

✓ Fast Reads

Fast Writes ?
?

?

change 1 
bit here

Copy /foo to /bar
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d

copy
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bit here

copy with 
new bit

Added a whole data 
block to change 1 bit

Fast Reads
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/

baroriginal

Low latency

Space efficient

✓
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Fast Reads

Fast Writes ?
?Copy /foo to /bar

no locality guarantees between data blocks

only have locality if 
the blocks are large
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d

copy
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foo

/

baroriginal

Low latency

Space efficient

✓
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Fast Reads

Fast Writes ?
?Copy /foo to /bar

no locality guarantees between data blocks

only have locality if 
the blocks are large

usually 4KiB  too small for locality⇒fre
d

copy
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baroriginal

Low latency

Space efficient

✓
✗

Fast Reads

Fast Writes

Copy /foo to /bar

no locality guarantees between data blocks

only have locality if 
the blocks are large

usually 4KiB  too small for locality⇒
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Larger blocks 

Better locality

Worse space efficiency

😄

😬
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Larger blocks 

Better locality

Worse space efficiency

😄

😬

Smaller blocks

Worse locality

Better space efficiency 😄

😬
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Larger blocks 

Better locality

Worse space efficiency

😄

😬

Smaller blocks

Worse locality

Better space efficiency 😄

😬

4KiB blocks

Too large 
for space

Too small 
for locality

😭
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Using a DAG to share 
data is great for latency
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Challenge: 
Small writes break sharing

Using a DAG to share 
data is great for latency



Our Solution: Bε-DAGs

Bε-Trees

BεtrFS
Bε-DAGs
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Bε-trees have good locality and 
batch together small writes



Our Solution: Bε-DAGs
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Bε-trees have good locality and 
batch together small writes

In this paper, we turn Bε-trees into 
Bε-DAGs to share data between files



Bε-Trees



Bε-Trees

B A B B B

A RG A C F

B D H A B R

pivots the rest buffer

A Bε-tree is a search tree 
(like a B-tree)
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Inserts get put in 
the root bufferNew file: 

/orange/D
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Bε-DAGs transform copy-on-write into copy-on-abundant-write 

• Gives strong bounds on space amplification 

• Preserves locality, even with small writes 

• Exploits Bε-tree’s batching and flushing 

Bε-DAGs preserve the fast reads and writes of Bε-trees 

• Preserve logarithmic tree height and query cost 

• Preserve asymptotic costs of inserts and updates 

Copies are fast and cheap 

• GOTO messages enable low-latency DAG mutations 

• Total work of copies is O(tree height)



Evaluation Conclusions
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BetrFS with Bε-DAGs has strong copy performance in practice 

• Low space amplification 

• Low latency copying  

• Good locality 

Bε-DAGs preserve BetrFS’s performance gains on other operations 

• Fast random writes 

• Good sequential I/O throughput 

• No aging 

• Strong across-the-board application benchmark performance



Thank you!

156


