
Saurabh	Kadekodi

Gotta	have	HeART	
Improving	storage	ef7iciency	by	exploiting	

disk-reliability	heterogeneity	

Greg	GangerRashmi	Vinayak



Carnegie Mellon Saurabh	Kadekodi	©	February	2019

Cluster	storage	systems
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• Storage	subsystem	of	distributed	systems

• Thousands	to	millions	of	disks	in	primary	storage	tier	

• Built	incrementally	according	to	demand
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Reliability	heterogeneity	in	disks
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• Disk	7leet	has	heterogeneous	collection	of	disks	

•Different	in	reliability	
•Manufacturing	differences	across	makes/models	

• Different	vibration	/	temperature	experiences	

• I/O	churn
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Overview	of	exploiting	reliability	heterogeneity
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• Data	redundancy	typically	same	across	disk	7leet	
• E.g.,	3-replication:	3	copies	of	data	on	independent	devices	

• Disks	from	same	storage	tier	vary	a	lot	in	failure	rates	
• E.g.,	HDDs	from	different	makes/models	fail	differently	

• Explicitly	consider	reliability	heterogeneity	in	deciding	redundancy	

• HeART:	Heterogeneity	Aware	Redundancy	Tuner	
• Tailors	redundancy	to	disk	failure	rate	heterogeneity	

• A	safe,	accurate	and	online	framework	

• Reduces	storage	overhead,	and	thus	cost	

• HeART	could	save	11-33%	disk	space	on	a	production	dataset
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Cluster	storage	system	reliability
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• Failures	common	in	today’s	cluster	storage	systems	
• Disk	failures	measured	as	annualized	failure	rates	(AFR)	

• AFR									expected	%	of	disk	failures	in	a	year		

• Popular	fault	tolerance	mechanism									redundancy	
• Full	data	replication	

• Erasure	coding	

• Redundancy	con7igurations	ignore	disk	AFR	differences
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Reliability	heterogeneity
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Backblaze	dataset	
5	yrs	of	HDD	reliability,	

100K+	disks
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Reliability	heterogeneity

�6

• HDD	failure	rates	vary	a	lot	in	the	7ield
• Also	shown	by	Schroeder	et	al.	for	SSDs	in	FAST	2016

• No	single	redundancy	scheme	is	good	enough	for	all	disks
• Conservative	redundancy									overprotection	for	strong	disk	types

• Lower	redundancy									subset	of	disks	risk	data	loss
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Exploiting	reliability	heterogeneity
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• Redundancy	decisions	informed	by	AFR	differences

• Challenges
1. Has	to	be	monitored	in	the	Gield

2. Disk	failure	rate	varies	over	its	lifetime

• Redundancy	tailoring	mechanism	needs	to	be:
• Safe:	prevent	under-redundancy	from	causing	data	loss

• Accurate:	identify	different	reliability	phases	correctly

• Online:	bene7its	only	realizable	during	disk’s	low	failure	rate
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The	bathtub	curve	(each	disk	group)
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Two	disk	groups	over	time
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Deployment	
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Heteretogeneity-Aware	Redundancy	Tuner

Reliability	requirement	
(MTTDL)

Anomaly	detector

or

HeART

Disk	health	
monitoring	data

Change	point	detector Redundancy	Tuner
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AFR	in	useful	life:	stability	&	anomalies
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• Useful	life	AFR	is	typically	stable,	within	reasonable	bounds	

• External	factors	can	cause	simultaneous	bulk	failures	
• Rack	power	failure,	accidents,	human	error,	etc.	

• “Anomalies”	appear	like	(premature)	wearout	
• Bene7its	proportional	to	length	of	useful	life	

• Bulk	failures	may	not	re7lect	true	HDD	failure	rate
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AFR	in	useful	life:	stability	&	anomalies
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Spikes	due	to	simultaneous	bulk	failures

Need	for	anomaly	detector
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AFR	in	useful	life:	7iltering	anomalies
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A	and	B:	300+	disks	failed	simultaneously

C D E
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Change	point	detection
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• Reliability	target	can	be	missed	if:	
• Hasty	declaration	of	end	of	infancy	

• Delayed	declaration	of	onset	of	wearout	

• Tradeoff	between	extracting	bene7its	and	safety	

• Use	online	change	point	detectors	to	identify	change	points
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Original	signal

Discrepancy	curve

Leveraging	existing	algorithms
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• Online	anomaly	detection	(RRCF)	[3]:

• Ruptures	compares	discrepancy	in	adjacent	sliding	windows	

• Window	length	is	one	month	by	default	

• weekly	or	fortnightly	AFRs	are	too	jumpy	

• monthly	AFRs	balance	reaction	time	with	accuracy	of	AFR

• Online	change	point	detection	(Ruptures)	[4]:

Original	signal

Discrepancy	curve
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The	Backblaze	dataset
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• 100K+	HDDs	belonging	to	Backblaze:	a	backup	company
• Daily	reliability	statistics	from	mid	2013	-	mid	2018

• Open	sourced

• 6	drive	makes/models	with	signi7icant	number	of	disks	to	test:

Disk	Grp Num	Drives Num	Failed Age	so	far	(yrs)

S-4 37015 9539 5

H-4A 8715 3939 4.77

H-4B 15048 1276 4.2

S-8C 9885 186 1.99

S-8E 14395 162 1.2

S-12E 21581 148 0.64
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Methodology	to	evaluate	cost	reductions
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• Need	target	reliability	(MTTDL)	
• Higher	the	MTTDL,	the	more	resilient	the	data	

• Reliability	target	decided	by	disk	group	with	highest	AFR	
• Currently																	on	all	disks	provided	acceptable	MTTDL	

• MTTDL	is	only	higher	for	disks	with	lower	AFR	

• Find	cheaper																							that	meets	MTTDL	

• Cheaper	redundancy										lower	storage	cost		

• 																							is	decided	with	the	following	constraints:	

• Tolerate	at	least	as	many	failures	as		

• Have	an	upper	bound	on	stripe	width	

ftdefau lt

ftdefau lt

ftdisk−g ro u p

ftdisk−g ro u p
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Evaluation	on	Backblaze	dataset
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• S-4	disks	have	the	highest	AFR	(4.01%)	in	Backblaze	
• Reliability	target	is	MTTDL	of																	on	S-4	HDDs			

• Upper	bound	on	stripe	width	=	2x	

• 														options	evaluated:	

• 3-replication	

• 6-of-9	erasure	code	

• 10-of-14	erasure	code

ftdefau lt

ftdefau lt

ftdefau lt
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Disk	group	AFR
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H-4A		
HDDs S-8E	HDDs



Carnegie Mellon Saurabh	Kadekodi	©	February	2019

HeART	in	action:	H-4A	HDDs
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Infant	mortality	end Old	age

x x

End	of	infancy	AFR	+	buffer	
=

HeART determined AFR 1.82%
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HeART	in	action:	S-8E	HDDs
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Only	infant	mortality	end	detected

x
HeART	determined	AFR	2.48%

End	of	infancy	AFR	+	buffer	
=
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Storage	savings:	6-of-9
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• Small	storage	overhead	of	only	1.5x
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Storage	savings:	6-of-9
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• Small	storage	overhead	of	only	1.5x
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Storage	savings:	10-of-14
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• Even	smaller	storage	overhead	of	only	1.4x
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Storage	savings:	10-of-14
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• Even	smaller	storage	overhead	of	only	1.4x
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Conclusion
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• Exploiting	reliability	heterogeneity	reduces	storage	cost	

• 11-33%	space	savings	observed	on	production	dataset	

• HeART:	an	online	heterogeneity-aware	redundancy	tuner	
• actively	engages	with	disk	bathtub	curves	

• built-in	online	anomaly	and	change	point	detector	

• suggests	cheap	redundancy	schemes	that	meet	reliability

Questions?

Thank	you!
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“My	heart	is	in	the	work”

“My	work	is	in	the	HeART”
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