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Cluster storage systems

e Storage subsystem of distributed systems

e Thousands to millions of disks in primary storage tier

e Built incrementally according to demand
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Reliability heterogeneity in disks
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e Disk fleet has heterogeneous collection of disks

e Different in reliability

e Manufacturing differences across makes/models

e Different vibration / temperature experiences
e [/O churn
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Overview of exploiting reliability heterogeneity

e Data redundancy typically same across disk fleet

e E.g, 3-replication: 3 copies of data on independent devices

e Disks from same storage tier vary a lot in failure rates
e E.g., HDDs from different makes/models fail differently

o Explicitly consider reliability heterogeneity in deciding redundancy

e HeART: Heterogeneity Aware Redundancy Tuner

e Tailors redundancy to disk failure rate heterogeneity
e A safe, accurate and online framework

e Reduces storage overhead, and thus cost

e HeART could save 11-33% disk space on a production dataset
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Cluster storage system reliability

e Failures common in today’s cluster storage systems

e Disk failures measured as annualized failure rates (AFR)

e AFR —» expected % of disk failures in a year

e Popular fault tolerance mechanism —» redundancy
e Full data replication

e Erasure coding

e Redundancy configurations ignore disk AFR differences
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Reliability heterogeneity
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Reliability heterogeneity
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Disk group (make/model)

 HDD failure rates vary a lot in the field
e Also shown by Schroeder et al. for SSDs in FAST 2016

e No single redundancy scheme is good enough for all disks

e Conservative redundancy — overprotection for strong disk types

e Lower redundancy — subset of disks risk data loss
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Exploiting reliability heterogeneity

e Redundancy decisions informed

e Challenges

by AFR differences

1. Has to be monitored in the field

2. Disk failure rate varies over its lifetime

e Redundancy tailoring mechanism needs to be:

e Safe: prevent under-redundancy

e Accurate: identify different relial

from causing data loss

nility phases correctly

e Online: benefits only realizable d
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The bathtub curve (each disk group)
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lower AFR — lower redundancy — lower storage cost
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Two disk groups over time
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Two disk groups over time

Deployment
(start monitoring)

fi tdefault = default fault tolerance scheme

f tdefault f tx f tdefault qé
X % e
Disk group x Disk group x =
infant-mortality end wearout start
f tdefault I : f ty : I f tdefault I GE’
Disk group y Disk group y =
Infant-mortality end wearout start

Carneg'ie Mellon 9 Saurabh Kadekodi © February 2019



Disk-group reliability timeline

What should the
redundancy be?

v
f tdefaultl f tdisk—group I f tdefault I qé
end of 4 start of decommissioning =
infancy wearout age
Is AFR

well-behaved?

How to detect?
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Heteretogeneity-Aware Redundancy Tuner

HeART

Disk health

Reliability requirement —_— N
monitoring data

(MTTDL)
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Disk-group reliability timeline

)
f tdefault f tdisk—group f tdefault -
| . | I. e
end of start of decommissioning
infancy wearout age
Is AFR

well-behaved?
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AFR in useful life: stability & anomalies

o Useful life AFR is typically stable, within reasonable bounds

e External factors can cause simultaneous bulk failures

e Rack power failure, accidents, human error, etc.

e “Anomalies” appear like (premature) wearout
e Benefits proportional to length of useful life

e Bulk failures may not reflect true HDD failure rate

Anomalous
failures
f tdefault f Lisk— mlt%default f ta’efault T
: 1me
end of premature true decommissioning
infancy wearout wearout age
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AFR in useful life: stability & anomalies
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Spikes due to simultaneous bulk failures

Need for anomaly detector
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AFR in usetful life: filtering anomalies

144 —— H-4B raw AFR data
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A and B: 300+ disks failed simultaneously
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Disk-group reliability timeline

: b
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How to detect?
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Change point detection
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e Reliability target can be missed if:
e Hasty declaration of end of infancy

e Delayed declaration of onset of wearout

e Tradeoff between extracting benefits and safety

e Use online change point detectors to identify change points
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Leveraging existing algorithms

° Online anomaly deteCtion (RRCF) [3] . w —Sine Wave with Anomaly =~ —Anomaly Score with Shingle Size=4

Original signal

e Online change point detection (Ruptures) [4]:

Original signal I |

Discrepancy cuw

e Ruptures compares discrepancy in adjacent sliding windows

e Window length is one month by default
e weekly or fortnightly AFRs are too jumpy

 monthly AFRs balance reaction time with accuracy of AFR
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Disk-group reliability timeline

What should the
redundancy be?
v W
f tdefaultl f tdisk—group I f tdefault I -
end of start of decommissioning =
infancy wearout age
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The Backblaze dataset

100K+ HDDs belonging to Backblaze: a backup company
e Daily reliability statistics from mid 2013 - mid 2018
e Open sourced

e 6 drive makes/models with significant number of disks to test:

Disk Grp Num Drives Num Failed Age so far (yrs)
37015 9539 5
8715 3939 4.77
15048 1276 4.2
9885 186 1.99
14395 162 1.2
21581 148 0.64
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Methodology to evaluate cost reductions

e Need target reliability (MTTDL)
e Higher the MTTDL, the more resilient the data

e Reliability target decided by disk group with highest AFR
e Currently ﬁdefaulr on all disks provided acceptable MTTDL
e MTTDL is only higher for disks with lower AFR

e Find cheaper /i Lyisk—group that meets MTTDL

e Cheaper redundancy — lower storage cost

* f14isk—group 1S decided with the following constraints:

e Tolerate at least as many failures as f Ldefauls

e Have an upper bound on stripe width
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Evaluation on Backblaze dataset

e S-4 disks have the highest AFR (4.01%) in Backblaze
» Reliability target is MTTDL of f7,,,,,, on S-4 HDDs

e Upper bound on stripe width = 2x f#;,,.;

o f1jorauis Options evaluated:

e 3-replication
e 6-0f-9 erasure code

e 10-0f-14 erasure code
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Disk group AFR
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HeART in action: H-4A HDDs
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HeART 1n action: S-B8E HDDs
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Storage savings: 6-0f-9

e Small storage overhead of only 1.5x
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Storage savings: 10-of-14

e Even smaller storage overhead of only 1.4x

Useful life savings
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Storage savings: 10-of-14
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Conclusion

e Exploiting reliability heterogeneity reduces storage cost
e 11-33% space savings observed on production dataset

e HeART: an online heterogeneity-aware redundancy tuner
e actively engages with disk bathtub curves
e built-in online anomaly and change point detector

e suggests cheap redundancy schemes that meet reliability

Thank you!

Questions?
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“My work is in the HeART"
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