
Optimizing Systems for Byte-Addressable
NVM by Reducing Bit Flipping

Daniel Bittman Peter Alvaro Darrell D. E. Long Ethan L. Miller

1

FAST ‘19
2019-02-26

CRSS Confidential

Byte-addressable Non-volatile Memory

2

BNVM is coming, and with it, new optimization targets

CRSS Confidential

Byte-addressable Non-volatile Memory

3

0 1 0 1 0 0 0 1

0 1 1 0 0 1 0 1

It’s not just writes... ...it’s the bits flipped by
those writes

BNVM power usage

4

Can we take advantage of this?

5

Software vs. hardware?

Can we take advantage of this?

6

Software vs. hardware?

How hard is it to reason about bit flips?

Can we take advantage of this?

7

Software vs. hardware?

How hard is it to reason about bit flips?

How do we design data structures to reduce bit flips?

8

Reducing Bit
Flips in Software ●

●
●

9

XOR linked lists

10

value

prev
next

value

prev
next

value

prev
next

value
xptr

value
xptr

value
xptr

xptr = next ⊕ prev

Traditional doubly linked list

XOR linked list

Pointers!

11

Some actual pointers
A = 0x000055b7bda8f260
B = 0x000055b7bda8f6a0

A ⊕ B = 0x4C0 = 0b10011000000

Using XOR in hash tables

12

key

value

xnext

key

value

xnext

key

value

xnext

key

value

xnext

...

...

Using XOR in hash tables

13

key

value

xnext D

key

value

00000 0

key

value

xxxxx 1

Both indicate “entry is empty”

From XOR linked lists to Red Black Trees

14

L RP

Standard 3-pointer red-black tree design

From XOR linked lists to Red Black Trees

15

L RP LX RX
LX = L ⊕ P

RX = R ⊕ P

Now 2-pointer, and XOR pointers

Evaluation ●

●

16

Experimental framework

17

, at the memory controller

Test different data structures, with different cache parameters,
over a varying number of operations

18

Bit flips: calling malloc()

Cross-over point between
40 and 48 bytes

19

Bit flips: XOR Linked Lists

XOR linked lists reduce
bit flips dramatically

better

20

Bit flips: Hash table

better

Hash table already had
few flips to save:

chains should be short

21

Bit flips: Red-black Trees

better

Significant savings

22

Bit flips: L2 Cache Behavior

better

L2 cache has ultimately little effect!

23

Bit flips: L2 Cache Behavior

better

L2 cache has ultimately little effect!

...even when increasing in size

24

Performance: RBT insert

better

Performance is not
significantly affected!

a) Performance cost of XORs
b) Performance benefit of smaller node size

25

Performance: hash table

better

Almost no effect on performance

CRSS Confidential

Conclusions

26

Savings are significant with little performance impact.

We can design around bit flips, and we should.

Bit flip/write inversion

27

Data structures

System
simulation Caching

effects Pointer
distance

Power and wear
estimates

Full systems

Real hardware

More data
structuresAdditional

techniques

Bitflips from
algorithms

ABI modifications

Thank You! Questions?
Daniel Bittman

darrell@ucsc.edu elm@ucsc.edupalvaro@ucsc.edu

28

https://gitlab.soe.ucsc.edu/gitlab/crss/opensource-bitflipping-fast19

29

Backup slides

30

Bit flips: instrumentation

better

31

Performance: RBT lookup

better

32

Performance: XOR Linked List

Operation XOR Linked List Doubly Linked List

45 +/- 1 45 +/- 1

27 +/- 1 28 +/- 1

2.6 +/ 0.1 2.2 +/- 0.1

Stack frames

33

arg0
pc

csr0
sp

csr1

arg0
pc

csr1
sp

fn0 fn1

Stack frames

34

arg0
pc

csr0
sp

csr1

arg0
pc
sp

fn0 fn1

csr1

“Wasted space”

35

Bit flips: stack frames

