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Byte-addressable Non-volatile Memory
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BNVM is coming, and with it, new optimization targets
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Byte-addressable Non-volatile Memory
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0 1 0 1 0 0 0 1

0 1 1 0 0 1 0 1

It’s not just writes... ...it’s the bits flipped by 
those writes



BNVM power usage
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Can we take advantage of this?
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Software vs. hardware?



Can we take advantage of this?
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Software vs. hardware?

How hard is it to reason about bit flips?



Can we take advantage of this?
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Software vs. hardware?

How hard is it to reason about bit flips?

How do we design data structures to reduce bit flips?
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Reducing Bit 
Flips in Software ●

●
●
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XOR linked lists
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Pointers!
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Some actual pointers
A = 0x000055b7bda8f260
B = 0x000055b7bda8f6a0

A ⊕ B = 0x4C0 = 0b10011000000



Using XOR in hash tables
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Using XOR in hash tables
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Both indicate “entry is empty”



From XOR linked lists to Red Black Trees
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L RP

Standard 3-pointer red-black tree design



From XOR linked lists to Red Black Trees
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L RP LX RX
LX = L ⊕ P

RX = R ⊕ P

Now 2-pointer, and XOR pointers



Evaluation ●

●
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Experimental framework
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,  at the memory controller

Test different data structures, with different cache parameters,
over a varying number of operations
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Bit flips: calling malloc()

Cross-over point between
40 and 48 bytes
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Bit flips: XOR Linked Lists

XOR linked lists reduce
bit flips dramatically

better
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Bit flips: Hash table

better

Hash table already had
few flips to save:

chains should be short
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Bit flips: Red-black Trees

better

Significant savings
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Bit flips: L2 Cache Behavior

better

L2 cache has ultimately little effect!
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Bit flips: L2 Cache Behavior

better

L2 cache has ultimately little effect!

...even when increasing in size
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Performance: RBT insert

better

Performance is not
significantly affected!

a) Performance cost of XORs
b) Performance benefit of smaller node size
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Performance: hash table

better

Almost no effect on performance
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Conclusions
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Savings are significant with little performance impact.

We can design around bit flips, and we should.

Bit flip/write inversion
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Data structures

System
simulation Caching

effects Pointer
distance

Power and wear 
estimates

Full systems

Real hardware

More data
structuresAdditional 

techniques

Bitflips from 
algorithms

ABI modifications



Thank You! Questions?
Daniel Bittman

darrell@ucsc.edu elm@ucsc.edupalvaro@ucsc.edu
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https://gitlab.soe.ucsc.edu/gitlab/crss/opensource-bitflipping-fast19
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Backup slides
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Bit flips: instrumentation

better
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Performance: RBT lookup

better
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Performance: XOR Linked List

Operation XOR Linked List Doubly Linked List

45 +/- 1 45 +/- 1

27 +/- 1 28 +/- 1

2.6 +/ 0.1 2.2 +/- 0.1



Stack frames
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Stack frames
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“Wasted space”
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Bit flips: stack frames


