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Talk Overview
▪ What is full-path indexing and its benefits?

• locality
▪ What are the challenges?

• renames
▪ How do we overcome them?

• data structure techniques: tree surgery and lifting



Conventional file systems use inodes
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Inode file systems show no locality in the worst case
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Full-path indexing file systems use full-paths
▪ Full-path indexing file systems index metadata and 

data in key-value stores using full-paths



Full-path indexing file systems use full-paths
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Full-path file systems ensure locality
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Scans are fast in full-path file systems
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Renames are cheap in inode file systems
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Renames are cheap in inode file systems
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Renames seem expensive with full-path indexing
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Renames seem expensive with full-path indexing

...
/A: data
/bar/B: data
/foo/C: data

...

/foo/var/D: data
/foo/var/E: data

...
/A: data
/bar/B: data

/foo/C: data
...

/bar/var/D: data
/bar/var/E: data

1. move kv pairs
2. change key prefixes

Expensive when rename size is large



Renaming big files are slow in full-path file systems



Renaming big files are slow in full-path file systems

 

slow



Renaming big files are slow in full-path file systems

 

Rename the Linux 
source directory 
takes 20 seconds

slow



Inode vs. Full-path indexing

rename locality

inode file systems

full-path file systems

We want to get decent renames with good locality



▪ In FAST 2016, zoning was introduced to BetrFS
▪ Zoning tries to get both locality and fast renames

Zoning tries to solve the rename problem



Zoning Example
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Zoning tries to achieve both fast renames and locality

small zones
(inode file systems)

big zones
(full-path file systems)

scan cost rename cost

sweet spot



Zoning performance

rename locality other operations 

zoning



Zoning achieves cheap renames



Zoning achieves cheap renames

big files form their own zones, 
renaming them is cheap



Zoning performance

rename locality other operations 

zoning



Zoning has relatively good locality

0

20

40

60

ext4 btrfs BetrFS-FPxfs zfs

se
co

nd
s

Time to grep the linux source directory (lower is better)

BetrFS-Zone

zoning is still 2.2x faster than 
other file systems, but 33% 
slower than full-path indexing



Zoning performance

rename locality other operations 

zoning



Zone maintenance can be expensive

10k zone splits

50% drop



Zoning performance

rename locality other operations 

zoning

Zoning is not the answer
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Moving is expensive in an array
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Moving kv pairs looks hard in an array, 
but they are stored in a Bε-tree in BetrFS



Bε-trees sometimes allow easy moves
Can be viewed as 
B-trees in this talk
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Bε-trees sometimes allow easy moves
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Bε-trees sometimes allow easy moves
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▪ Two problems:
• need to get an isolated subtree

▪ tree surgery in O(Bε-tree height) IOs
• need to update keys

▪ lifting, no additional IO cost
▪ The whole solution is called range-rename

A rename can be done by moving a subtree



Tree surgery slices out an isolated subtree
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Tree surgery slices out an isolated subtree
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Tree surgery slices out an isolated subtree
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Tree surgery slices out an isolated subtree
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▪ Reasons:
• to setup pivots for the source tree
• POSIX allows renames to overwrite files

Tree surgery also slices at the destination



Tree surgery finishes with a pointer swing
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Tree surgery finishes with a pointer swing
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Tree surgery completes in O(Bε-tree height) IOs
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▪ Revert the IO cost to O(subtree size)

▪ Solution: lifting to convert Bε-trees to lifted Bε-trees
• prefix updates are free

Updating all keys in the subtree is expensive



Lifting lifts the common prefix of two pivots
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Lifting lifts the common prefix of two pivots
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Lifting lifts the common prefix of two pivots
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Lifting lifts the common prefix of two pivots
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▪ Lifting happens at all times
▪ Cost of other operations:

• collect lifted parts along the root-to-leaf path
• no additional IO

▪ Cost of maintaining key lifting
• key lifting can only change in node splits/merges
• no additional IO

Lifting does not introduce additional IOs



▪ Range-rename performs tree surgery
• O(Bε-tree height) IOs 

▪ Key/value pairs are stored in lifted Bε-trees
• keys are updated after tree surgery without cost

Range-rename completes in O(Bε-tree height) IOs



Evaluation

other operations rename applications

range-rename



▪ Dell optilex destop
• 4-core 3.4 GHz i7, 4 GB RAM
• 7200 RPM 500 GB Seagate Barrcuda

Experimental Setup



Tokubench

no cliff

Range-rename doesn’t charge other operations as much as zoning



Evaluation

other operations rename applications

range-rename



Rename Throughput



Rename Throughput

In normal cases, range-rename can rename as fast as other file systems



Evaluation

other operations rename applications

range-rename



IMAP benchmark
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rsync benchmark
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BetrFS-RR is 13% faster 
than BetrFS-Zone

BetrFS-RR is faster than BetrFS-Zone in application benchmarks



Evaluation

other operations rename applications

range-rename



Evaluation

other operations rename applications

range-rename

● Lower taxes on non-rename operations
○ A few regressions 

● Worst case rename costs: logarithmic in size
● Additional opportunities for range rename

in paper



▪ BetrFS with range-rename
• maintain full-path indexing
• decent rename performance
• no tradeoff: locality, rename and other operations

Conclusion

Web: betrfs.org
Code: https://github.com/oscarlab/betrfs 

Email: betrfs@googlegroups.com


