The Full Path to
Full-Path Indexing

Yang Zhan, Alex Conway, Yizheng Jiao, Eric Knorr, Michael A. Bender,
Martin Farach-Colton, William Jannen, Rob Johnson, Donald E. Porter, Jun Yuan

—_\ THE UNIVERSITY i ?, . ®
Q| ., Williams VITIWAre
é at CHAPEL HILL 3

University

Talk Overview

= What is full-path indexing and its benefits?
* locality

= What are the challenges?
° renames

= How do we overcome them?
- data structure techniques: tree surgery and lifting

Conventional file systems use inodes
— [disk
— ;j"ata of D
tl7 N
bar / -~ B
— data of A
—B coo
foo / - i data of C
\ :B ;j"ata of E
var D
— data of B
N
£

between the logical and

worst case: no relation
physical locations

Inode file systems show no locality in the worst case

— .
:'7/ 1 A disk
j7 N\
bar -~ B
4 — data of A
G
j7 N\
foo - C
read all filesm/\jz —
var - D
\| = data of B
\ AN
E
— multiple random I0s]
—__

Full-path indexing file systems use full-paths

= Full-path indexing file systems index metadata and
data 1n key-value stores using full-paths

Full-path indexing file systems use full-paths
Yo disk

ar

b /
L=/ /A: data
/bar/B: data
/foo/C: data
[foo/var/D: data
[foo/var/E: data

foo

-

=) [[o) o) =) [=

T

var

logically related things
are physically related

Full-path file systems ensure locality

:'7/ X AB disk
\
bar ; - B
[/ E\/A: data
j7 (T /bar/B: data
foo - C
read all filesm/\jz —
var /| D
\ e
E one large 10

Scans are fast in full-path file systems

Time to grep the linux source directory (lower is better)

60

40

seconds

20

ext4 btrfs xfs zfs BetrFS-FP

Talk Overview

= What is full-path indexing and its benefits?
- locality

= What are the challenges?
° renames

= How do we overcome them?
- data structure techniques: tree surgery and lifting

Renames are cheap in inode file systems

—r .
:'7/ 1 A disk
— data of D
. B
— data of A
- C data of C
N data of E
[one pointer swing D
— data of B
rename /foo/var to /bar/var N
E

Renames are cheap in inode file systems

—r _
—TI7 1 A disk
— data of D
bar - B
— data of A
—B ooo
/ . C data of C
foo / X —
N data of E
D
— data of B
rename /foo/var to /bar/var N [y
E
no change]

Renames seem expensive with full-path indexing

/ '

rename /foo/var to /bar/var

disk

/A: data

/bar/B: data

[foo/C: data

[need to maintain key order]

Renames seem expensive with full-path indexing

/A: data /A: data
/bar/B: data /bar/B: data
[foo/C: data

. /foo/C: data
1. move kv pairs
2. change key prefixes

Expensive when rename size 1s large

Renaming big files are slow 1n full-path file systems

Time to rename a file (lower is better)
- ext4 = btrfs - xfs - zfs - BetrFS-FP

0.2
0.15
W
'g 0.1
8 0.05
w =
0
RVD® ® R R R R R NN wWw

file size (log scale)

Renaming big files are slow 1n full-path file systems

Time to rename a file (lower is better)
- ext4 = btrfs - xfs - zfs - BetrFS-FP

0.2 W

0.15
w
'8 0.1
@)
8 0.05 _—
? 0
DX R % R PV

file size (log scale)

Renaming big files are slow 1n full-path file systems

Time to rename a file (lower is better)
- ext4 = btrfs - xfs - zfs - BetrFS-FP

0.2
0.15
o
= 0.1
S 005
w
0
R R
w0 S
U GG

file size (log sca

Inode vs. Full-path indexing

rename locality
: , ‘A A\ o0
inode file systems @ Q.\)
) : 00 AA
full-path file systems ~ —

We want to get decent renames with good locality

Zoning tries to solve the rename problem

= In FAST 2016, zoning was introduced to BetrFS
= Zoning tries to get both locality and fast renames

var D

'| zone maintenance cost:
| N | azone is too large: zone split
/| azone is too small: zone merge

Zoning tries to achieve both fast renames and local

/ scan cost

sweet spot

\47

rename cost \

small zones
(inode file systems)

big zones
(full-path file systems)

1ty

Zoning performance

rename locality other operations

o)

)

— -
. [[I
zoning — e -

Zoning achieves cheap renames

Time to rename a file (lower is better)
- ext4 = btrfs = xfs = zfs = BetrFS-FP = BetrFS-Zone

0.2
0.15
3 0.1
=
o
S 0.05
» == -
0
R I I R I T T S R e,
S R

file size (log scale)

Zoning achieves cheap renames

Time to rename a file (lower is better)
- ext4 = btrfs ~ xfs = zfs = BetrFS-FP = BetrFS-Zone

0.2
0.15 [big files form their own zones,
0 renaming them is cheap
© 0.1
c
3
S 0.05
(7))
0
C PR P®
N A SR el NN

file size (log scale)

Zoning performance

rename locality other operations

™~ 5020
, AA ()
zoning = -l -

Zoning has relatively good locality

Time to grep the linux source directory (lower is better)

60

40

seconds

20

ext4 btrfs xfs zfs BetrFS-FP BetrFS-Zone

Zoning performance

rename locality other operations
f; —
. 0
zoning Rl = e
g

S~

Zone maintenance can be expensive

Tokubench: create 3 million 200-byte files in a balanced directory tree (higher is better)

50000 = BetrFS-Zone
S 40000
[
(@]
O
a
& 30000
Q
2
E 20000
2 (o)
E 50% drop
(@)
(&)
(o]

10000
10k zone splits

500000 1000000 1500000 2000000 2500000

files created

Zoning performance

rename locality other operations
: A A () ()
zoning
g ~— I

Zoning 1s not the answer

Talk Overview

= What is full-path indexing and its benefits?
- locality

= What are the challenges?
° renames

= How do we overcome them?
* data structure techniques: tree surgery and lifting

Moving 1s expensive 1n an array
Yarew. [disk
_B\
b > B
/var / =i
—— 1 /bar/B
foo - C /foo/C
— [foolvar/D
TN / [foolvar/E
var i
AN
_; [Moving kv pairs looks hard in an array, J

but they are stored in a Bé-tree in BetrFS

B*-trees sometimes allow easy moves

Can be viewed as
B-trees in this talk

—

|

interior nodes store pivots
and pointers to children

/A
/bar/B

/A

/bar/B
f

/foolC ffoo/C
[fool/var/D
/foo/var/E

Ieaves store kv pairs]

B*-trees sometimes allow easy moves

|

This move can be done
by changing pivots and
a pointer swing

1A

/bar/B

J

IA

/bar/B

/foo/C

.

" move /foo/C to /C

&

]

ffoolvar/D J

B*-trees sometimes allow easy moves

A

/foo/C

[foo/var/D

A rename can be done by moving a subtree

= Two problems:

+ need to get an 1solated subtree

= tree surgery in O(B®-tree height) IOs
« need to update keys

= lifting, no additional IO cost

= The whole solution is called range-rename

Tree surgery slices out an 1solated subtree

[get a subtree of range (/red__, /red) }

%pletely in range]

[need to take care of fringe nodes }

Tree surgery

1

%

.

o |

1ces Slit an 1solated subtree

-~

&
-

get a subtree of range (/red_, /red)

~

)
N

-

1. walk down the tree with min and max key

J

Tree surgery slices out an 1solated subtree

”

)

)

-~

get a subtree of range (/red __ , /red

min’ max)

~

&
p

)
S

-

1. walk down the tree with min and max key

J

-~

-

2. start node splits from leaves

~

J

Tree surgery slices out an 1solated subtree

)

B %

P

o

S

)

-~

get a subtree of range (/red __ , /red

min’ max)

~

&
p

-

1. walk down the tree with min and max key

)
N

-~

-

2. start node splits from leaves

-~

-

3. keep splitting until two splits converge

Tree surgery slices out an 1solated subtree

2
HeN

)

|

"
I

)

-~

&
p

get a subtree of range (/red __ , /red

min’ max)

~

)
N

-

1. walk down the tree with min and max key

J

-~

-

2. start node splits from leaves

~

J

-~

-

3. keep splitting until two splits converge

~

J

Tree surgery slices out an 1solated subtree

N Y

4)

_ / : ||| get a subtree of range (/red . , /red)

- J
()

G J
()

2. start node splits from leaves

) :
(—) : ' || 1. walk down the tree with min and max key
| / I

/

() —p <
: — — | 3. keep splitting until two splits converge
. . N J
we now have a — l
isolated subtree

/
)

Tree surgery also slices at the destination

= Reasons:
* to setup pivots for the source tree
- POSIX allows renames to overwrite files

Tree surgery finishes with a pointer swing

= rename /red to /blue .

)

Tree surgery finishes with a pointer swing

= rename /red to /blue

Tree surgery completes 1n O(B®-tree height) 10s

)

/

each subtree slicing go through two
root-to-leaf path

|

.y

: \—/w: not touched]
MG D

)

Updating all keys in the subtree 1s expensive
= Revert the 10 cost to O(subtree size)

= Solution: lifting to convert B*-trees to lifted B*-trees
- prefix updates are free

Lifting lifts the common prefix of two pivots

Common_prefix(/red ., /red)= /red S }\

all keys in the subtree must have preflx
/red, there is no need to store that

lift /red

”w S

Lifting lifts the common prefix of two pivots

Search for /red/z }

/orange

/yellow

le

Iv

/a
/red lifted, search for /z J /b
Ic |
/d| /red lifted, search for /z

lift /red

/w

/X

Ired lifted, search for /z J

Lifting lifts the common prefix of two pivots

/a
/b

/orange

/X

lift /blue

[z

Lifting lifts the common prefix of two pivots

all keys in the subtree are updated
automatically after the pointer swing

/orange

lift /blue

Lifting does not introduce additional 10s

= Lifting happens at all times
= (Cost of other operations:
« collect lifted parts along the root-to-leaf path
* no additional 10
= Cost of maintaining key lifting
« key lifting can only change in node splits/merges
* no additional 10

Range-rename completes in O(B®*-tree height) 10s

= Range-rename performs tree surgery
« O(B¢-tree height) IOs

= Key/value pairs are stored 1n lifted B®-trees
 keys are updated after tree surgery without cost

Evaluation

other operations

rename

applications

range-rename

Experimental Setup

= Dell optilex destop
« 4-core 3.4 GHz 17,4 GB RAM
- 7200 RPM 500 GB Seagate Barrcuda

Tokubench

Tokubench: create 3 million 200-byte files in a balanced directory tree (higher is better)

50000 - extd
| = btrfs
o 40000 ‘ xfs
c
S ‘ - zfs
()]
[= :
g 30000 '! 4‘ BetrFS-Zone
% o - BetrFS-RR
A |
E 20000
-
S .
o 10000
o
0

500000 1000000 1500000 2000000 2500000

Range-rename doesn’t charge other operations as much as zoning

Evaluation

other operations rename applications
- ~ 2 ~ 2
range-rename ' — o

Rename Throughput

The average throughput of renaming one file 100 times (higher is better)

100 - ext4
= btrfs
- - xfs
- zfs
g = BetrFS-Zone
8 50 - BetrFS-RR
N
w
()
E \/
©
§ 25
0
DOV R R PV OV RO R RO
W é‘\é‘%fﬁbﬁ\@*&&b{ﬁ NN S S

file size (log scale)

Rename Throughput

The average throughput of renaming one file 100 times (higher is better)

100 - ext4
= btrfs
- - xfs
- zfs
g = BetrFS-Zone
8 50 - BetrFS-RR
N
w
()
£
(40]
§ 25

0

R LR N PR

In normal cases, range-rename can rename as fast as other file systems

Evaluation

other operations

rename

applications

range-rename

-
=~

X
==

~
L)

—_

ops/s

IMAP benchmack

The throughput of 4 threads operating on tLthan BetrFS-Zone

150

100

50

ext4

BetrFS-RR is 12% faster

er is better)

btrfs xfs zfs BetrFS-Zone BetrFS-RR

MB/s

rsync benChm(BetrFS-RR is 13% faster

than BetrFS-Zone
The throughput of rsync to copy the linux d|re0tory (nigh

40

20

BetrFS-RR i1s faster than BetrFS-Zone in application benchmarks

Evaluation

other operations

rename

applications

range-rename

00
=/

00
=/

Evaluation

other operations

rename

applications

range-rename U..7

%}0)

e Lower taxes on non-rename operations

o A few regressions @
e Worst case rename costs: logarithmic 1n size &

in paper

f e Additional opportunities for range rename

Conclusion

= BetrFS with range-rename
 maintain full-path indexing
+ decent rename performance
* no tradeoff: locality, rename and other operations

Web: betrfs.org
Code: https://github.com/oscarlab/betrfs
Email: betrfs@googlegroups.com

