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Talk Overview

= What is full-path indexing and its benefits?
* locality

= What are the challenges?
°  renames

= How do we overcome them?
- data structure techniques: tree surgery and lifting



Conventional file systems use inodes
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Inode file systems show no locality in the worst case
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Full-path indexing file systems use full-paths

= Full-path indexing file systems index metadata and
data 1n key-value stores using full-paths



Full-path indexing file systems use full-paths
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Full-path file systems ensure locality
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Scans are fast in full-path file systems

Time to grep the linux source directory (lower is better)
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Renames are cheap in inode file systems
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Renames are cheap in inode file systems
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Renames seem expensive with full-path indexing
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rename /foo/var to /bar/var
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Renames seem expensive with full-path indexing

/A: data /A: data
/bar/B: data /bar/B: data
[foo/C: data

. /foo/C: data
1. move kv pairs
2. change key prefixes

Expensive when rename size 1s large




Renaming big files are slow 1n full-path file systems

Time to rename a file (lower is better)
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Renaming big files are slow 1n full-path file systems

Time to rename a file (lower is better)
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Renaming big files are slow 1n full-path file systems

Time to rename a file (lower is better)
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Inode vs. Full-path indexing

rename locality
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We want to get decent renames with good locality




Zoning tries to solve the rename problem

= In FAST 2016, zoning was introduced to BetrFS
= Zoning tries to get both locality and fast renames



____________________________________

var D

'| zone maintenance cost:
| N | azone is too large: zone split
/| azone is too small: zone merge




Zoning tries to achieve both fast renames and local
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Zoning performance

rename locality other operations
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Zoning achieves cheap renames

Time to rename a file (lower is better)
- ext4 = btrfs = xfs = zfs = BetrFS-FP = BetrFS-Zone
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Zoning achieves cheap renames

Time to rename a file (lower is better)
- ext4 = btrfs ~ xfs = zfs = BetrFS-FP = BetrFS-Zone
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Zoning performance

rename locality other operations
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Zoning has relatively good locality

Time to grep the linux source directory (lower is better)
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Zoning performance

rename locality other operations
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Zone maintenance can be expensive

Tokubench: create 3 million 200-byte files in a balanced directory tree (higher is better)
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Zoning performance

rename locality other operations
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Moving 1s expensive 1n an array
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B*-trees sometimes allow easy moves

Can be viewed as
B-trees in this talk
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B*-trees sometimes allow easy moves
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B*-trees sometimes allow easy moves
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A rename can be done by moving a subtree

= Two problems:

+ need to get an 1solated subtree

= tree surgery in O(B®-tree height) IOs
« need to update keys

= lifting, no additional IO cost

= The whole solution is called range-rename



Tree surgery slices out an 1solated subtree

[get a subtree of range (/red__, /red ) }

%pletely in range ]

[need to take care of fringe nodes }




Tree surgery
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Tree surgery slices out an 1solated subtree
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Tree surgery slices out an 1solated subtree
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Tree surgery slices out an 1solated subtree
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Tree surgery slices out an 1solated subtree
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Tree surgery also slices at the destination

= Reasons:
* to setup pivots for the source tree
- POSIX allows renames to overwrite files



Tree surgery finishes with a pointer swing

= rename /red to /blue .

)




Tree surgery finishes with a pointer swing

= rename /red to /blue




Tree surgery completes 1n O(B®-tree height) 10s
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Updating all keys in the subtree 1s expensive
= Revert the 10 cost to O(subtree size)

= Solution: lifting to convert B*-trees to lifted B*-trees
- prefix updates are free



Lifting lifts the common prefix of two pivots
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Lifting lifts the common prefix of two pivots
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Lifting lifts the common prefix of two pivots
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Lifting lifts the common prefix of two pivots

all keys in the subtree are updated
automatically after the pointer swing

/orange

lift /blue




Lifting does not introduce additional 10s

= Lifting happens at all times
= (Cost of other operations:
« collect lifted parts along the root-to-leaf path
* no additional 10
= Cost of maintaining key lifting
« key lifting can only change in node splits/merges
* no additional 10



Range-rename completes in O(B®*-tree height) 10s

= Range-rename performs tree surgery
«  O(B¢-tree height) IOs

= Key/value pairs are stored 1n lifted B®-trees
 keys are updated after tree surgery without cost
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Experimental Setup

= Dell optilex destop
« 4-core 3.4 GHz 17,4 GB RAM
- 7200 RPM 500 GB Seagate Barrcuda



Tokubench

Tokubench: create 3 million 200-byte files in a balanced directory tree (higher is better)
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Evaluation
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Rename Throughput

The average throughput of renaming one file 100 times (higher is better)
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Rename Throughput

The average throughput of renaming one file 100 times (higher is better)
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In normal cases, range-rename can rename as fast as other file systems
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ops/s

IMAP benchmack

The throughput of 4 threads operating on tLthan BetrFS-Zone
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rsync benChm( BetrFS-RR is 13% faster
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Evaluation

other operations

rename

applications
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e Lower taxes on non-rename operations

o A few regressions @
e Worst case rename costs: logarithmic 1n size &

in paper

f e Additional opportunities for range rename




Conclusion

= BetrFS with range-rename
 maintain full-path indexing
+ decent rename performance
* no tradeoff: locality, rename and other operations

Web: betrfs.org
Code: https://github.com/oscarlab/betrfs
Email: betrfs@googlegroups.com



