
Ram Kesavan, Harendra Kumar, Sushrut Bhowmik

WAFL Iron: Repairing Live Enterprise File 
Systems

1

NetApp Inc.

USENIX Conference on FAST, 2018



WAFL Background
¡ ONTAP available in various configurations

– “Typical” ONTAP node: 100’s of FlexVol volumes in a few aggregates
– Datasets of several apps hosted on a node
– FlexVol and aggregate are WAFL file systems, each up to 800 TiB

¡ WAFL is a log-structured COW file system
– Guaranteed consistency after panic/power failures 
– Journal of recent client ops in NVRAM
– All file system state reconstructed during journal replay
– Corruption of journal cannot corrupt file system

¡ at worst, loss of some recent client ops

2



Protection For File System Blocks
¡ Each 4KB block persisted with checksum + file system context

– Checksum protects against subsequent media damage
– Context protects against lost/mis-directed writes
– Mismatch during read is detected below WAFL

¡ WAFL layered on software RAID
– 0+1, dual parity, and triple parity
– Damaged blocks reconstructed on-the-fly by RAID

¡ Reconstruction may be impossible; in rare cases
– Multi-device failure (past RAID’s limit)
– Block corrupted before checksum, context, parity computed

¡ Typically software bugs: scribbles or bugs in logic

3



WAFL Check & Repair

¡ On-the-fly handling of damage to user data
– Persistently tag as bad, return protocol-specific error

¡ On-the-fly handling of damage to most auxiliary metadata
– Rebuild in background
– At worst, temporal loss of associated feature or performance

¡ Aggregate marked corrupt and taken offline
– Only if WAFL code-path cannot navigate past corrupt metadata
– NetApp customer support case raised
– Repair invoked

4



Online vs Offline Repair
¡ WAFL Check (circa1996): classic fsck-like behavior

– Memory:Metadata ratio scaling issues
– File system unavailable to clients
– Time to complete ~linear with file system size

¡ WAFL Iron (circa 2003): focus on above drawbacks
– Flag to “aggr online” command
– Unconditional commit; offline mode of Iron provides conditional commit
– Repair speed controllable: can trade-off client performance

¡ Other examples: ReFS and recent Linux check-ins for XFS

5

Iron provides practically the same assurances as WAFL Check did.



Rules of Engagement for Iron

¡ Similar treatment for all ops (protocol & internal)
1. Ensure all state is checked on-demand at access
2. Don’t reverse state afterwards

¡ Can do so conservatively for internal ops
3. Only check each metadata block once

¡ Monotonically expand portion of self-consistent metadata
¡ Guarantee convergence even with new incoming ops

4. Iron status metadata must scale with memory, file system size
¡ Stored in (meta)files; all metadata in WAFL are stored in files
¡ Pages in/out of buffer cache based on access

6



7

Metadata in WAFL: Primary vs Derived
Superblk

…

…

inodefile
indirects

L0s: user & metafiles

inodefile L0s

file & metafile 
indirects

pr
im

ar
y

dir-entries

derived

per-block refcnts

inode free map

…

per-inode block count



Claiming of Resources: Iron Status Metadata
1. Shadow derived metafiles

– Re-computes derived metadata
– Eg. claimed refcnt: ith number counts #refs to ith block seen thus far
– Replaces derived metadata

¡ If count adjusted down to 0: reclaims lost block
– A block is considered free iff claimed refcnt == refcnt == 0

¡ WAFL block allocator consults (and increments) both counts
¡ “Free”-path conditionally decrements the claimed refcnt

2. Progress indicator metafiles
– Ensures no wasted work; metafile blocks are scavenged and re-loaded
– Eg. checked bitmap: ith bit indicates ith block has been checked

8



Phases of WAFL Iron
¡ Mount: client access not allowed yet

– Scan subset of primary & derived metadata
– Reduction of that subset over releases: hour+ to <1min
– Create Iron status metafiles
– Mount aborts if this step does not complete

¡ Enable full client access
– On-demand check + repair work based on client access
– Background scan to check + repair all metadata

¡ Completion: no change for clients
– Final book-keeping activity
– Delete Iron status metafiles
– Aggregate marked clean

9



Corruption: Manifest vs Latent

¡ Manifest: localized to the block
– Invalid signatures, out-of-bound values, etc.
– Mostly caused by hardware errors or memory scribbles
– Detected on first load/use of metadata in the block

¡ Latent: each block appears correct
– Violates distributed property of the file system
– Mostly caused by logics bugs
– Detected when invariants in the code are tripped

¡ Both forms of corruption can impact primary or derived metadata
– Paper walks thru’ each permutation 

10



Claiming of Resources: On-Demand vs Lazy
¡ Via background scan: eg. claimed refcnt metafile
¡ On-demand claiming protects against latent corruption

– i.e., avoid incorrect re-allocation of a used resource
¡ Metadata integrity (circa 2011)

– Described in one of the FAST ‘17 WAFL papers
– Avoids latent corruption due to memory scribbles or logic bugs
– Avoids corruption to Iron status metadata

¡ Quarantining & metadata integrity ensure no incorrect re-allocation
– On-demand claiming of resources became unnecessary
– Random IOs (claimed refcnt metafile) avoided when servicing client ops

11



Performance
¡ Two main metrics: decade+ continual improvement
¡ Time to first-client access

– Hours down to secs in almost all configurations
¡ Interference to client performance 

– Apps in the ”ironing” aggregate and other aggregates in the node
– Up to 25% on mid to low-end range
– Extra IO overhead due to Iron less on all-SSD nodes

¡ But, interference (as a %age) is higher; baseline op latencies are <1ms
– Other improvements in the dev pipeline

¡ With reduced interference, time to completion becoming less critical

12



Conclusion

¡ Practical online repair is necessary for enterprises
¡ WAFL Iron first shipped in 2003

– Provides practically same assurances as offline repair
– Continued improvement over time

¡ Lower time to first access
¡ Lower interference to client ops

¡ Recent changes and improvement (not presented in paper)
– Autoheal; first shipped with FlexGroups
– WAFL Iron parallelism enhancements

13


