
Towards Robust File System Checkers

Om Rameshwar Gatlaα, Muhammad Hameed α, Mai Zheng α

Viacheslav Dubeyko, Adam Manzanares, Filip Blagojevic, Cyril Guyot, Robert Mateescu

α New Mexico State University Western Digital Research



Motivation

• Recovery procedure was interrupted
• Severe data loss reported

1



Motivation

• Recovery procedure was interrupted
• Severe data loss reported

• Lustre’s backend ldiskfs is a variant of EXT4
• Lustre File system checker (lfsck) relies on EXT4 checker 

(e2fsck) 
• Overall recovery is complicated (several days to fix)

1



Research questions:
• Are existing checkers resilient to faults?
• How to build a robust checker?

1



• Motivation
• Background & Related Work
• Are existing checkers resilient to faults?
• How to build robust checkers?
• Evaluation
• Conclusion

Outline

2



Background & Related Work

3

File systems are designed to organize data and maintain data integrity



Background & Related Work

3

File systems are designed to organize data and maintain data integrity

File systems may become corrupt despite various protection techniques
- E.g.: journaling , soft updates, copy-on-write, etc.



Background & Related Work

File systems may become corrupt despite various protection techniques
- E.g.: journaling , soft updates, copy-on-write, etc.

File system checkers (fsck) recover a corrupted file system back to a 
consistent state 

- E.g.: e2fsck, xfs-repair, etc.
- Some existing checkers exhibit logging mechanism:

3

File System Checker Logging Support
EXT 2/3/4 e2fsck Yes

XFS xfs_repair No
F2FS fsck.f2fs No

BTRFS btrfsck No

File systems are designed to organize data and maintain data integrity



Background & Related Work
Existing work for improving checkers 
E.g.: ffsck[@FAST’13], SWIFT[@EUROSYS’12], SQCK[@OSDI’08]

4



Background & Related Work
Existing work for improving checkers 
E.g.: ffsck[@FAST’13], SWIFT[@EUROSYS’12], SQCK[@OSDI’08]

4

Do not address one fundamental issue: Resilience in face of interruption



Background & Related Work
Existing work for improving checkers 
E.g.: ffsck[@FAST’13], SWIFT[@EUROSYS’12], SQCK[@OSDI’08]

Demonstrate that an interrupted checking could leave the file system in 
an uncorrectable state 

One general solution to this issue

4

Do not address one fundamental issue: Resilience in face of interruption

Our Efforts:



• Motivation
• Background & Related Work
• Are existing checkers resilient to faults?
• How to build robust checkers?
• Evaluation
• Conclusion

Outline

5



Are existing checkers resilient to faults?

A testing framework to interrupt checker

Two components:

6



Are existing checkers resilient to faults?

Component 1: 
Corrupted images to trigger checker

A testing framework to interrupt checker

Two components:

6



Are existing checkers resilient to faults?

Component 2: 
Fault injection engine

Component 1: 
Corrupted images to trigger checker

A testing framework to interrupt checker

Two components:

6



Component 1: Corrupted images
Two methods to generate corrupted images:

7



Two methods to generate corrupted images:

Method 1: Collect test images provided by developers
- E.g.: test images in e2fsprogs
- Corruptions envisioned by developers
- Convenient

7

Component 1: Corrupted images



Two methods to generate corrupted images:

Method 1: Collect test images provided by developers
- E.g.: test images in e2fsprogs
- Corruptions envisioned by developers
- Convenient

Method 2: Corrupt metadata using file system debug tools
- E.g.: debugfs, xfs_db, etc.
- Cover more scenarios
- Flexible

7

Component 1: Corrupted images



Component 2: Fault Injection Engine 

Build a fault injection engine “rfsck-test” using iSCSI driver

8



Build a fault injection engine “rfsck-test” using iSCSI driver

Two modes of operation:
1. Basic mode

Single iSCSI drive for one test image

2. Advanced mode
Two iSCSI drives for one test image and one log device

8

Component 2: Fault Injection Engine 



Two modes of operation:
1. Basic mode

Single iSCSI drive for one test image

2. Advanced mode
Two iSCSI drives for one test image and one log device

For checkers without logging

For checkers with logging

Build a fault injection engine “rfsck-test” using iSCSI driver

8

Component 2: Fault Injection Engine 



Replay

Record

fsck rfsck-test
(basic mode)

test image

Basic Mode

Fault Injection Engine: rfsck-test

9



Replay
1
2

3

4

5

I/O Block Trace

Record

fsck

I/O Commands

Basic Mode

rfsck-test
(basic mode)

Fault Injection Engine: rfsck-test

I/O blocks
(block size is determined by 
fault injection granularity

E.g.: 512 B or 4 KB)

test image

9



Replay
1
2

3

4

5

I/O Block Trace

Record

Basic Mode

rfsck-test
(basic mode)fsck

I/O blocks
(block size is determined by 
fault injection granularity

E.g.: 512 B or 4 KB)

test image

9

Fault Injection Engine: rfsck-test



Replay

I/O Block Trace

Record
I/O blocks

(block size is determined by 
fault injection granularity

E.g.: 512 B or 4 KB)
1
2

3

4

5

Basic Mode

rfsck-test
(basic mode)fsck

test image

1

2

9

Fault Injection Engine: rfsck-test

Replay a prefix of blocks



Replay

Record

Advanced Mode

fsck

1
2

3
4

5

test 
image

log

rfsck-test
(advanced mode)

test 
image

log
10

Fault Injection Engine: rfsck-test



Replay
1
2

3

4

5

I/O Block Trace

Record

Advanced Mode

fsck

1
2

3
4

5

test 
image

log

I/O 
Commands

rfsck-test
(advanced mode)

test 
image

log
10

Fault Injection Engine: rfsck-test



Replay
1
2

3

4

5

I/O Block Trace

Record

Advanced Mode

fsck

1
2

3
4

5

test 
image

log

rfsck-test
(advanced mode)

test 
image

log
10

Fault Injection Engine: rfsck-test



Replay
1
2

3

4

5

I/O Block Trace

Record

Advanced Mode

fsck

1
2

3
4

5

test 
image

log

rfsck-test
(advanced mode)

test 
image

log

1
2 3

10

Fault Injection Engine: rfsck-test



Replay
1
2

3

4

5

I/O Block Trace

Record

Advanced Mode

fsck

1
2

3
4

5

test 
image

log

rfsck-test
(advanced mode)

test 
image

log

1
2 3

1
2

3

10

Fault Injection Engine: rfsck-test



test 
image

11

Overall Workflow



(1) copy

test 
image

11

Overall Workflow



(2) fsck
(1) copy

test 
image

11

Overall Workflow



(2) fsck

(3) reference image

(1) copy

test 
image

11

Overall Workflow



(2) fsck

(4) record

I/O
commands

(3) reference image

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record

I/O
commands

(3) reference image

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record(6) replay

I/O
commands

partial  commands

(3) reference image

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record(6) replay

I/O
commands

partial  commands

(3) reference image

(7) interrupted image(s)

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record(6) replay

I/O
commands

partial  commands

(3) reference image

(7) interrupted image(s)

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record(6) replay

I/O
commands

partial  commands

(3) reference image

(7) interrupted image(s)

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record(6) replay

I/O
commands

partial  commands

(3) reference image

(7) interrupted image(s)

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow

Exhaust all possible fault points during one execution of checker
1 test image       many interrupted images



(2) fsck

(4) record(6) replay

(8) fsck

I/O
commands

partial  commands

(3) reference image

(7) interrupted image(s)

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record(6) replay

(8) fsck

I/O
commands

partial  commands

(3) reference image

(7) interrupted image(s) (9) repaired image(s)

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

I/O
commands

partial  commands

(3) reference image

(7) interrupted image(s) (9) repaired image(s)

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

I/O
commands

partial  commands

(3) reference image

(7) interrupted image(s) (9) repaired image(s)

(5) copy

(1) copy

test 
image

11

rfsck-test
(basic mode)

Overall Workflow



(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

I/O
commands

partial  commands

rfsck-test
(basic mode)

(3) reference image

(7) interrupted image(s) (9) repaired image(s)

(5) copy

(1) copy

test 
image

Overall Workflow

11



3 case studies performed:
e2fsck: checker for EXT 2/3/4 file systems
e2fsck-undo: e2fsck with logging support
xfs_repair: checker for XFS file system

12

Testing existing checkers



3 case studies performed:
e2fsck: checker for EXT 2/3/4 file systems
e2fsck-undo: e2fsck with logging support
xfs_repair: checker for XFS file system

12

Testing existing checkers

Overall, 4 types of corruptions observed:



3 case studies performed:
e2fsck: checker for EXT 2/3/4 file systems
e2fsck-undo: e2fsck with logging support
xfs_repair: checker for XFS file system

Overall, 4 types of corruptions observed:

Un-mountable

12

Testing existing checkers



3 case studies performed:
e2fsck: checker for EXT 2/3/4 file systems
e2fsck-undo: e2fsck with logging support
xfs_repair: checker for XFS file system

Un-mountable File Content 
Corruption

12

Testing existing checkers

Overall, 4 types of corruptions observed:



3 case studies performed:
e2fsck: checker for EXT 2/3/4 file systems
e2fsck-undo: e2fsck with logging support
xfs_repair: checker for XFS file system

Un-mountable File Content 
Corruption

Misplacement
of Files

12

Testing existing checkers

Overall, 4 types of corruptions observed:



3 case studies performed:
e2fsck: checker for EXT 2/3/4 file systems
e2fsck-undo: e2fsck with logging support
xfs_repair: checker for XFS file system

Un-mountable File Content 
Corruption

Misplacement
of Files Others

12

Testing existing checkers

Overall, 4 types of corruptions observed:



3 case studies performed:
e2fsck: checker for EXT 2/3/4 file systems
e2fsck-undo: e2fsck with logging support
xfs_repair: checker for XFS file system

Un-mountable File Content 
Corruption

Misplacement
of Files Others

Cannot be fixed by another run of fsck
12

Testing existing checkers

Overall, 4 types of corruptions observed:



Case Study: e2fsck

Used 175 test images from e2fsprogs

Block size of all images is 1KB

Fault injected at two granularities: 512B and 4KB

13



Case Study: e2fsck
(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

partial   commands

I/O   commands

(1) copy

(5) copy

(3) reference image

rfsck-test
(7) interrupted image(s) (9) repaired image(s)

RECAP

1 test image       many interrupted/repaired images

14



Fault injection 
granularity

# of EXT4 
test images

# of repaired 
images generated

# of images reporting 
corruption

test images repaired images

512 B 175 25,062 34 240

4 KB 175 3,192 17 37

Table 1: Number of test images and repaired images reporting corruption

Case Study: e2fsck
(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

partial   commands

I/O   commands

(1) copy

(5) copy

(3) reference image

rfsck-test
(7) interrupted image(s) (9) repaired image(s)

RECAP

1 test image       many interrupted/repaired images

14



Fault injection 
granularity

# of EXT4 
test images

# of repaired 
images generated

# of images reporting 
corruption

test images repaired images

512 B 175 25,062 34 240

4 KB 175 3,192 17 37

Table 1: Number of test images and repaired images reporting corruption

Case Study: e2fsck
(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

partial   commands

I/O   commands

(1) copy

(5) copy

(3) reference image

rfsck-test
(7) interrupted image(s) (9) repaired image(s)

RECAP

1 test image       many interrupted/repaired images

14



Fault injection 
granularity

# of EXT4 
test images

# of repaired 
images generated

# of images reporting 
corruption

test images repaired images

512 B 175 25,062 34 240

4 KB 175 3,192 17 37

Table 1: Number of test images and repaired images reporting corruption

Case Study: e2fsck
(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

partial   commands

I/O   commands

(1) copy

(5) copy

(3) reference image

rfsck-test
(7) interrupted image(s) (9) repaired image(s)

RECAP

1 test image       many interrupted/repaired images

14



Fault injection 
granularity

# of EXT4 
test images

# of repaired 
images generated

# of images reporting 
corruption

test images repaired images

512 B 175 25,062 34 240

4 KB 175 3,192 17 37

Table 1: Number of test images and repaired images reporting corruption

Case Study: e2fsck
(2) fsck

(4) record(6) replay

(8) fsck

(10) compare

partial   commands

I/O   commands

(1) copy

(5) copy

(3) reference image

rfsck-test
(7) interrupted image(s) (9) repaired image(s)

RECAP

1 test image       many interrupted/repaired images

14



Corruption type
test images repaired images

512 B 4 KB 512 B 4 KB
cannot mount 20 1 41 3

data corruption 9 5 107 10

misplacement 9 11 82 23
others 1 1 10 1

Table 2: Classification of corruptions observed 
on test and repaired images

Case Study: e2fsck

15



Corruption type
test images repaired images

512 B 4 KB 512 B 4 KB
cannot mount 20 1 41 3

data corruption 9 5 107 10

misplacement 9 11 82 23
others 1 1 10 1

Table 2: Classification of corruptions observed 
on test and repaired images

Case Study: e2fsck

15

Smaller fault injection granularity, more corruption scenarios



Case Study: e2fsck-undo

16

Undo log feature in e2fsprogs utilities
E.g.: e2fsck, debugfs, mke2fs, etc.



Case Study: e2fsck-undo

16

Undo log feature in e2fsprogs utilities
E.g.: e2fsck, debugfs, mke2fs, etc.

Records data block that is being updated into a log
- undo the changes made (if necessary)



Case Study: e2fsck-undo

1
2
3
4

Update from 
e2fsck

Undo LogBlock device

1

16

Undo log feature in e2fsprogs utilities
E.g.: e2fsck, debugfs, mke2fs, etc.

Records data block that is being updated into a log
- undo the changes made (if necessary)



Case Study: e2fsck-undo

1
2
3
4

Update from 
e2fsck

Undo LogBlock device

1

1

16

Undo log feature in e2fsprogs utilities
E.g.: e2fsck, debugfs, mke2fs, etc.

Records data block that is being updated into a log
- undo the changes made (if necessary)



Case Study: e2fsck-undo
Undo log feature in e2fsprogs utilities
E.g.: e2fsck, debugfs, mke2fs, etc.

Records data block that is being updated into a log
- undo the changes made (if necessary)

1
2
3
4

Undo LogBlock device

1

16



Case Study: e2fsck-undo

Fault Injection 
Granularities

Number of images reporting corruption
e2fsck e2fsck-undo

512 B 34 34
4 KB 17 15

Table 3: Number of test images reporting corruption 
under e2fsck and e2fsck-undo

Undo log fails

17



• Motivation
• Background & Related Work
• Research Question
• Are existing checkers resilient to faults?
• How to build robust checkers?
• Evaluation
• Conclusion

Outline

18



Why does e2fsck-undo Fail?

19

Undo log is a Write-ahead log (WAL)

In WAL, it is expected that the log block reaches persistent storage 
before the updated blocks reaches its storage



Why does e2fsck-undo Fail?
Undo log is a Write-ahead log (WAL)

In WAL, it is expected that the log block reaches persistent storage 
before the updated blocks reaches its storage

Undo log does not enforce such ordering

19



Why does e2fsck-undo Fail?

20



Why does e2fsck-undo Fail?

log

fs img

block written 
to the log
block written 
to the fs img

a sync 
operation

20



Why does e2fsck-undo Fail?

time

undo 
block 1

log

fs img

block written 
to the log
block written 
to the fs img

a sync 
operation

20



Why does e2fsck-undo Fail?

time

undo 
block 1

log

fs img

repair 
block 1

block written 
to the log
block written 
to the fs img

a sync 
operation

20



Why does e2fsck-undo Fail?

time

undo 
block 1

log

fs img

undo 
block 2

repair 
block 1

block written 
to the log
block written 
to the fs img

a sync 
operation

20



Why does e2fsck-undo Fail?

time

undo 
block 1

log

fs img

repair 
block 1

undo 
block 2

repair 
block 2

block written 
to the log
block written 
to the fs img

a sync 
operation

20



Why does e2fsck-undo Fail?

time

undo 
block 1

log

fs img

undo 
block 2

repair 
block 1

undo 
block 3

repair 
block 2

block written 
to the log
block written 
to the fs img

a sync 
operation

20



Why does e2fsck-undo Fail?

time

undo 
block 1

log

fs img

repair 
block 1

undo 
block 2

repair 
block 2

undo 
block 3

repair 
block 3

block written 
to the log
block written 
to the fs img

a sync 
operation

20



Why does e2fsck-undo Fail?

time

undo 
block 1

undo 
block 2

undo 
block 3

log

fs img

repair 
block 1

repair 
block 2

repair 
block 3

block written 
to the log
block written 
to the fs img

a sync 
operation

20



Why does e2fsck-undo Fail?

time

undo 
block 1

undo 
block 2

undo 
block 3

log

fs img

block written 
to the log
block written 
to the fs img

a sync 
operation

20

2

1 1



Why does e2fsck-undo Fail?

time

logfs img

block written 
to the log
block written 
to the fs img

a sync 
operation

20

2

1 1

No ordering guarantee



Robust File System Checker

One simple fix: “e2fsck-patch”

Enforce synchronous I/O to the log device

Add “O_SYNC” flag while opening the log device

21



time

fs img

block written 
to the log
block written 
to the fs img

a sync 
operation

22

log

One simple fix: e2fsck-patch



One simple fix: e2fsck-patch

time

undo 
block 1

logfs img

block written 
to the log
block written 
to the fs img

a sync 
operation

22

1



time

undo 
block 1

fs img

repair 
block 1

block written 
to the log
block written 
to the fs img

a sync 
operation

22

1

log

One simple fix: e2fsck-patch



time

undo 
block 1

undo 
block 2

log

fs img

repair 
block 1

block written 
to the log
block written 
to the fs img

a sync 
operation

22

2

1

log

One simple fix: e2fsck-patch



time

undo 
block 1

undo 
block 2

log

fs img

repair 
block 1

repair 
block 2

block written 
to the log
block written 
to the fs img

a sync 
operation

22

2

1

log

One simple fix: e2fsck-patch



time

undo 
block 1

undo 
block 2

undo 
block 3

log

fs img

repair 
block 1

repair 
block 2

block written 
to the log
block written 
to the fs img

a sync 
operation

22

3

2

1

log

One simple fix: e2fsck-patch



time

undo 
block 1

undo 
block 2

undo 
block 3

log

fs img

repair 
block 1

repair 
block 2

repair 
block 3

block written 
to the log
block written 
to the fs img

a sync 
operation

22

3

2

1

log

One simple fix: e2fsck-patch



time

log

fs img

repair 
block 1

repair 
block 2

repair 
block 3

block written 
to the log
block written 
to the fs img

a sync 
operation

22

3

2

1

log

One simple fix: e2fsck-patch



time

logfs img

block written 
to the log
block written 
to the fs img

a sync 
operation

22

3

2

1

3

2

1

One simple fix: e2fsck-patch



Drawbacks of this approach:
1. Extensive synchronization incurs severe

performance overhead
2. Only works with e2fsck

23

One simple fix: e2fsck-patch



Drawbacks of this approach:
1. Extensive synchronization incurs severe

performance overhead
2. Only works with e2fsck

Can we design a generalized logging library with low 
performance overhead?

23

One simple fix: e2fsck-patch



Robust File System Checker
Observe similarities among different checkers:

1. Most checkers use write system calls (pwrite and its variants)

2. Repairs within independent areas of file system layout
E.g.: block groups in Ext4, allocation groups in XFS, etc.

3. Subset of total writes may cause severe corruption
- Key idea is to maintain atomicity of checker’s writes

24



Robust File System Checker
Observe similarities among different checkers:

1. Most checkers use write system calls (pwrite and its variants)
- Redirect all writes to the log

2. Repairs within independent areas of file system layout
E.g.: block groups in Ext4, allocation groups in XFS, etc.

3. Subset of total writes may cause severe corruption
- Key idea is to maintain atomicity of relevant writes

24



Robust File System Checker
Observe similarities among different checkers:

1. Most checkers use write system calls (pwrite and its variants)
- Redirect all writes to the log

2. Repairs within independent areas of file system layout
E.g.: block groups in Ext4, allocation groups in XFS, etc.

3. Subset of total writes may cause severe corruption
- Key idea is to maintain atomicity of relevant writes

24

Fine-grained logging with safe transactions



General Logging Library: rfsck-lib
Design a general redo log library “rfsck-lib”

- Log format extended from undo log in e2fsck

24



Design a general redo log library “rfsck-lib”
- Log format extended from undo log in e2fsck

Fine-grained logging using safe transactions
- Maintain atomicity of relevant writes

Multiple ways to integrate with tradeoff:
- Mark all repairs as one transaction
- Mark repairs of each pass as one transaction
- Mark repairs for each consistency rule as one transaction

24

General Logging Library: rfsck-lib



time

25fs img log

Log Format:
General Logging Library: rfsck-lib



time

redo
header

25fs img log

Log Format:
General Logging Library: rfsck-lib



time

redo
header superblock

25fs img log

Log Format:
General Logging Library: rfsck-lib



time

redo
header superblock

a fixed-sized index block

25fs img log

Log Format:
General Logging Library: rfsck-lib



time

redo
header superblock

in
de

x0

a fixed-sized index block

txn begin

25fs img log

Log Format:
General Logging Library: rfsck-lib



time

redo 
block 1

redo
header superblock

in
de

x0

in
de

x1

redo blk1

a fixed-sized index block

txn begin

25fs img log

Log Format:
General Logging Library: rfsck-lib



time

redo 
block 1

redo 
block 2

redo
header superblock

in
de

x0

in
de

x1

in
de

x2

redo blk1 redo
blk2

a fixed-sized index block

txn begin

25fs img log

Log Format:
General Logging Library: rfsck-lib



time

redo 
block 1

redo 
block 2

redo
header superblock

in
de

x0

in
de

x1

in
de

x2

in
de

x3

redo blk1 redo
blk2

a fixed-sized index block

txn begin
txn end

25fs img log

Log Format:
General Logging Library: rfsck-lib



time

redo 
block 1

redo 
block 2

redo
header superblock

in
de

x0

in
de

x1

in
de

x2

in
de

x3

redo blk1 redo
blk2

a fixed-sized index block

txn begin
txn end

25fs img log

2

1

Log Format:
General Logging Library: rfsck-lib



time

redo 
block 1

redo 
block 2

redo
header superblock

in
de

x0

in
de

x1

in
de

x2

in
de

x3

in
de

x4

redo blk1 redo
blk2

a fixed-sized index block

txn begin
txn end

25fs img log

2

1

Log Format:
General Logging Library: rfsck-lib



time

redo 
block 1

redo 
block 2

redo 
block 3

redo
header superblock

in
de

x0

in
de

x1

in
de

x2

in
de

x3

in
de

x4

in
de

x5

redo blk1 redo
blk2

redo
blk3

a fixed-sized index block

txn begin
txn end

25fs img log

2

1

Log Format:
General Logging Library: rfsck-lib



time

redo 
block 1

redo 
block 2

redo 
block 3

redo
header superblock

in
de

x0

in
de

x1

in
de

x2

in
de

x3

in
de

x4

in
de

x5

redo blk1 redo
blk2

redo
blk3

a fixed-sized index block

txn begin

in
de

x6

txn end

25fs img log

2

1

Log Format:
General Logging Library: rfsck-lib



time

redo 
block 1

redo 
block 2

redo 
block 3

redo
header superblock

in
de

x0

in
de

x1

in
de

x2

in
de

x3

in
de

x4

in
de

x5

redo blk1 redo
blk2

redo
blk3

a fixed-sized index block

txn begin

in
de

x6

txn end

25fs img log

2

1

3

Log Format:
General Logging Library: rfsck-lib



time

redo
header superblock

in
de

x0

in
de

x1

in
de

x2

in
de

x3

in
de

x4

in
de

x5

redo blk1 redo
blk2

redo
blk3

a fixed-sized index block

txn begin

in
de

x6

txn end

25fs img log

2

1

3

2

1

3

Log Format:
General Logging Library: rfsck-lib



• Motivation
• Background & Related Work
• Research Question
• Are existing checkers resilient to faults?
• How to build robust checkers?
• Evaluation
• Conclusion

Outline

27



rfsck-lib: General Logging Library
Integration with existing checkers:

rfsck-lib + e2fsck     => rfsck-ext
rfsck-lib + xfs_repair => rfsck-xfs

rfsck-ext rfsck-xfs

Lines of Code 50 15
Integration “-R” option “-R” option
Safe transaction For each pass For entire run
Replay log At the end or at 

restart points
At the end

Table 4: Integrating rfsck-lib with existing checkers

26



Evaluation of EXT4 checkers

Test 
Images

Test images 
reporting corruption
e2fsck rfsck-ext

17 17 0

Evaluation of XFS checkers

Test 
Images

Test images 
reporting corruption

xfs_repair rfsck-xfs
12 12 0

Robustness of rfsck-lib

28



No corruption reported

Robustness of rfsck-lib

28

Evaluation of EXT4 checkers

Test 
Images

Test images 
reporting corruption
e2fsck rfsck-ext

17 17 0

Evaluation of XFS checkers

Test 
Images

Test images 
reporting corruption

xfs_repair rfsck-xfs
12 12 0



Performance of rfsck-lib
Specifications:

CPU:   Intel Xeon 5160 3GHz
RAM:  8GB
OS:     Ubuntu 16.04 (Linux Kernel v4.4)
HDD:  WD5000AAKS

Practical File System sizes of 100, 200 & 500 GB

Fill in steps using fs_mark tool

Corrupt metadata using debugfs & xfs_db

29



Performance of rfsck-lib

Figure 1: Performance comparison of e2fsck, e2fsck-
undo, e2fsck-patch and rfsck-ext

30



Performance of rfsck-lib

Figure 1: Performance comparison of e2fsck, e2fsck-
undo, e2fsck-patch and rfsck-ext

30

• Degraded performance of e2fsck-
patch due to extensive 
synchronization



Performance of rfsck-lib

Figure 1: Performance comparison of e2fsck, e2fsck-
undo, e2fsck-patch and rfsck-ext

30

• Degraded performance of e2fsck-
patch due to extensive 
synchronization

• rfsck-ext incurs a max. overhead 
of 12%



Performance of rfsck-lib

Figure 1: Performance comparison of e2fsck, e2fsck-
undo, e2fsck-patch and rfsck-ext

30

• Degraded performance of e2fsck-
patch due to extensive 
synchronization

• rfsck-ext incurs a max. overhead 
of 12%

• Overhead reduces as file system size 
increases
- Runtime of checking is dominant, 

compared to replay



• Motivation
• Background & Related Work
• Research Question
• Are existing checkers resilient to faults?
• How to build robust checkers?
• Evaluation
• Conclusion

Outline

32



Conclusion
• Are existing checkers resilient to faults? 

33



Conclusion
• Are existing checkers resilient to faults?     NO
• Strong dependencies among updates       vulnerabilities in checkers

33



Conclusion
• Are existing checkers resilient to faults?     NO
• Strong dependencies among updates       vulnerabilities in checkers 

• How to build a robust checker?
• One simple fix: e2fsck-patch

33



Conclusion
• Are existing checkers resilient to faults?     NO
• Strong dependencies among updates       vulnerabilities in checkers 

• How to build a robust checker?
• One simple fix: e2fsck-patch
• General logging library: rfsck-lib
• Easy to integrate

33



Conclusion
• Are existing checkers resilient to faults?     NO
• Strong dependencies among updates       vulnerabilities in checkers 

• How to build a robust checker?
• One simple fix: e2fsck-patch
• General logging library: rfsck-lib
• Easy to integrate

• Consistent with previous studies that show “recovery procedures are 
imperfect”
• Why does the cloud stop computing?: Lessons from hundreds of service outages [SoCC’16]
• Failure recovery: When the cure is worse than the disease [HotOS’13]

33



Conclusion
• Are existing checkers resilient to faults?     NO
• Strong dependencies among updates       vulnerabilities in checkers 

• How to build a robust checker?
• One simple fix: e2fsck-patch
• General logging library: rfsck-lib
• Easy to integrate

• Consistent with previous studies that show “recovery procedures are 
imperfect”
• Why does the cloud stop computing?: Lessons from hundreds of service outages [SoCC’16]
• Failure recovery: When the cure is worse than the disease [HotOS’13]

• Raise awareness on vulnerabilities in recovery procedures, and facilitate 
building fault-resilient systems

33



Conclusion
• Are existing checkers resilient to faults?     NO
• Strong dependencies among updates       vulnerabilities in checkers 

• How to build a robust checker?
• One simple fix: e2fsck-patch
• General logging library: rfsck-lib
• Easy to integrate

• Consistent with previous studies that show “recovery procedures are 
imperfect”
• Why does the cloud stop computing?: Lessons from hundreds of service outages [SoCC’16]
• Failure recovery: When the cure is worse than the disease [HotOS’13]

• Raise awareness on vulnerabilities in recovery procedures, and facilitate 
building fault-resilient systems

33



THANK YOU





BACK UP 
SLIDES



Framework to interrupting the recovery 

Build a fault injection tool “rfsck-test” using 
customized iSCSI driver to emulate faults

Adopt the “Clean power fault” model
• Clean I/O termination
• No ordering of I/O
• Serves as the lower bound of failure impact



Case Study: xfs_repair

Generated 20 test images using xfs_db

Block size of all images is 4KB

Fault injected at two granularities: 512B and 4KB



Case Study: xfs_repair

Fault injection 
granularity

# of XFS 
test images

# of repaired 
images generated

# of images reporting 
corruption

test images repaired images

512 B 3 1,127 2 443

4 KB 17 1,409 12 737

Table 4: Number of test images and repaired images reporting corruption



Are existing checkers resilient to faults?

No, because there is strong dependency among updates

Also, existing logging mechanism in checkers also fail



2. Framework to interrupting the recovery 

Why two modes?



2. Framework to interrupting the recovery 

Why two modes?

Some checkers exhibit logging mechanism 
- E.g: undo log in e2fsck

Test for resilience with logging mechanism enabled 



Conclusion
Analyze the behavior of file system checkers under faults

- May lead to unrecoverable inconsistencies

Analyze the logging mechanism of existing checkers
- Fail the test of resilience 

Build a general logging library “rfsck-lib” to strengthen existing checkers

Minimum LoC added for integration

Existing checkers become more robust but induce minimal performance 
overhead (max 12%)



Robust File System Checker

No, because there is strong dependency among updates

Also, existing logging mechanism in checkers also fail



Robustness of rfsck-lib

Evaluated rfsck-ext and rfsck-xfs

Used rfsck-test framework

Used 17 EXT4 & 12 XFS test images

None reported corruption 

28



Conclusion
• Study behavior of existing checkers under faults
• Interrupted repair may cause irreparable damage

• Build a general logging library “rfsck-lib” to address this issue

• Test for robustness using fault injection tool “rfsck-test”

• Raise awareness on vulnerabilities in recovery procedures

• Integrate rfsck-lib into existing checkers to build more robust 
checkers

33



e2fsck-patch: A simple fix

time

undo 
block 1

undo 
block 2

undo 
block 3

log

fs img

repair 
block 1

repair 
block 2

repair 
block 3

e2fsck-patch

block written 
to the log
block written 
to the fs img

a sync 
operation

22



Performance of rfsck-lib

Figure 2: Performance comparison of xfs_repair, rfsck-xfs

• Similar to rfsck-ext

• rfsck-xfs induces upto 0.8% 
overhead

31


