Mirador: An Active Control Plane for Datacenter Storage

Jake Wires and Andrew Warfield
Coho Data
Trends

<table>
<thead>
<tr>
<th>SSD</th>
<th>Cap / 1u</th>
<th>Xput per data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 TB</td>
<td>64TB</td>
<td>312MB/s/TB</td>
</tr>
<tr>
<td>8 TB</td>
<td>256TB</td>
<td>78 MB/s/TB</td>
</tr>
<tr>
<td>32 TB</td>
<td>1PB</td>
<td>20 MB/s/TB</td>
</tr>
<tr>
<td>128 TB</td>
<td>4PB</td>
<td>5 MB/s/TB</td>
</tr>
</tbody>
</table>

NVMe device: x4 PCIe
Broadwell CPU: 40 PCIe lanes
TOR cross-rack links typically oversubscribed at 3 or 4:1

Placement is critical
Progress
Mirador actively migrates data and network flows to optimize for efficiency, performance, and scale.
Challenges

- Software defined networking provides a nice model, but: persistence presents additional challenges
 - More constraints to satisfy
 - More dimensions to optimize
 - More expensive to reconfigure
Placement

- Replicate files across failure domains
- and minimize cross-rack traffic
- and co-locate related files
- and stripe files across devices
- and respect device capacity limits
- and respect device performance limits
- and arrange for parallelizable device rebuilds
- and distribute load evenly across nodes
- and ensure exclusive caching
- and move cold data to cheaper media
- and support customer X’s special requirements for multimedia files
- and ...
Pipeline

Centralized three-stage pipeline continuously optimizes placement
Monitor collects resource utilization levels and longitudinal workload profiles
Pipeline

Planning engine optimizes configuration along multiple dimensions
Scheduler coordinates migration of data and network flows
Policy

Approach policy as a search problem:

- **Rules** (aka *objective functions*) codify intent
- **Costs** prioritize rules
- **Solvers** optimize cost

```python
@rule(model.Device)
def load_balanced(fs, device, domain):
    cost, penalty = 0, DEVICE_BALANCED_COST
    # compute load of current device
    # for the current sample interval
    load = device.load()
    # compute load of least-loaded device
    minload = fs.mindevice().load()
    if load - minload > LOAD_SPREAD:
        # if the difference is too large,
        # the current device is overloaded
        cost = penalty
    return cost
```

Rules quantify violations
Optimization

● Given an existing configuration and a set of policy rules:
 ○ Minimize cost of violations
 ○ Minimize churn of reconfiguration

● Pluggable solver interface
 ○ Branch and bound
 ○ Greedy

Solvers search for solutions
Our Production Policy and Constraint Solver

7 rules governing:

- Network and storage performance and capacity balancing
- Replication across tiers and failure domains
- Device parallelism for striped files

Two-pass greedy algorithm

- Addresses highest-cost violations first
- Uses hints provided by rules to prune search space

rules.py: 219 sloc solver.py: 128 sloc glue.py: 1330 sloc
A Monolithic Alternative

gine.py: 2,289 sloc
Assigning Costs

- Rules do not eliminate the tension between conflicting goals
- They do provide convenient knobs for tuning the overarching policy

A typical policy test case

test/*.yaml: 11,954 sloc
Assigning Costs

- Rules do **not** eliminate the tension between conflicting goals
- They **do** provide convenient knobs for tuning the overarching policy

This complexity exists independently from policy language
Finding Solutions

<table>
<thead>
<tr>
<th>Objects</th>
<th>Devices</th>
<th>Reconfigurations</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1K</td>
<td>10</td>
<td>6.40 ± 2.72</td>
<td>0.40 ± 0.06</td>
</tr>
<tr>
<td>1K</td>
<td>100</td>
<td>145.50 ± 33.23</td>
<td>0.83 ± 0.08</td>
</tr>
<tr>
<td>1K</td>
<td>1000</td>
<td>220.00 ± 12.53</td>
<td>10.11 ± 0.49</td>
</tr>
<tr>
<td>10K</td>
<td>10</td>
<td>0.00 ± 0.00</td>
<td>1.61 ± 0.01</td>
</tr>
<tr>
<td>10K</td>
<td>100</td>
<td>55.70 ± 5.46</td>
<td>5.54 ± 0.37</td>
</tr>
<tr>
<td>10K</td>
<td>1000</td>
<td>1475.00 ± 69.70</td>
<td>16.71 ± 0.88</td>
</tr>
<tr>
<td>100K</td>
<td>10</td>
<td>0.00 ± 0.00</td>
<td>17.10 ± 0.37</td>
</tr>
<tr>
<td>100K</td>
<td>100</td>
<td>9.30 ± 4.62</td>
<td>22.37 ± 5.38</td>
</tr>
<tr>
<td>100K</td>
<td>1000</td>
<td>573.80 ± 22.44</td>
<td>77.21 ± 2.87</td>
</tr>
</tbody>
</table>

$O(N \times \log N \times \log M)$ for N objects and M devices
Workload-Aware Placement

- Policy rules informed by detailed workload profiles present new opportunities:
 - Working set size bin-packing
 - Noisy neighbor isolation
 - Workload co-scheduling
- See paper for more details!
Conclusion

● Separate control path for optimizing placement
● Active placement of data and network flows
● High dimensionality makes placement a hard problem
● Configuration as search