
File Systems Fated for
Senescence? Nonsense,

Says Science!
Alex Conway🃟 , Ainesh Bakshi🃟, Yizheng Jiao♢, Yang Zhan♢, Michael

A. Bender♠, William Jannen♠, Rob Johnson♠, Bradley C. Kuszmaul♡,
Donald E. Porter♢, Jun Yuan♣ and Martin Farach-Colton🃟

🃟Rutgers University, ♢The University of North Carolina at Chapel Hill,
♠Stony Brook University, ♡Oracle Corporation and Massachusetts Institute of Technology,

♣Farmingdale State College of SUNY

File Systems Fated for
Senescence? Nonsense,

Says Science;
The Essence of

Semperjuvenescense is
Coalescence!

File Systems Fated for
Senescence? Nonsense,

Says Science;
The Essence of

Semperjuvenescense is
Coalescence!

old age

being young forevermerging together

File System Aging

Aging is fragmentation over time

Performance

In this talk

Do file systems age?

What can we do about it?

Is aging a problem?

Is aging a problem?

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
fragmentation in normal use.”

“If you do have problems with fragmentation on
Linux, you probably need a larger hard disk.”

Is aging a problem?

http://howtogeek.com

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
fragmentation in normal use.”

“If you do have problems with fragmentation on
Linux, you probably need a larger hard disk.”

“Modern Linux filesystems keep
fragmentation at a minimum…Therefore it

is not necessary to worry about
fragmentation in a Linux system.”

Is aging a problem?

http://howtogeek.com

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
fragmentation in normal use.”

“If you do have problems with fragmentation on
Linux, you probably need a larger hard disk.”

“Modern Linux filesystems keep
fragmentation at a minimum…Therefore it

is not necessary to worry about
fragmentation in a Linux system.”

Nope

Is aging a problem?

http://howtogeek.com

Is aging a problem?

Is aging a problem?

Aging happens in real filesystems
• Smith and Seltzer (’97)

Benchmarks should incorporate aging
• Zhu, Chen and Chiueh (’05)
• Agrawal, A. Arpaci-Dusseau and R. Arpaci-Dusseau (’09)

Yep

Is aging a problem?

YepNope

Let’s do some
science!

Inducing Aging

Developer workload

Server workload

Synthetic workloads

We use three different workloads

Developer workload

Server workload

Synthetic workloads

We use three different workloads

See the paper

Inducing Aging

Simulating a Developer

Simulating a Developer

get coffee

Simulating a Developer

get coffee

git pull

git pull

Simulating a Developer

get coffee

git pull

git pull

make

make

Simulating a Developer

get coffee

git pull

git pull

make

make
get coffee

Simulating a Developer

get coffee

git pull

git pull

make

make
get coffee
git pull

Simulating a Developer

get coffee

git pull

git pull
make
get coffee
git pull
add awesome features

Simulating a Developer

get coffee

git pull

git pull
make
get coffee
git pull
add awesome features
get coffee

Simulating a Developer

get coffee

git pull

git pull
make
get coffee
git pull
add awesome features
get coffee
git pull

Simulating a Developer

get coffee

git pull

git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs

Simulating a Developer

get coffee

git pull

git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
...

Simulating a Developer

get coffee

git pull

git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
...

We can simulate a developer by replaying Git histories

Simulating a Developer

Simulating a Developer

Use the Linux kernel repo from github.com

Do 100 git pulls

Measure Performance

http://github.com

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Intrafile
Fragmentation

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Intrafile
Fragmentation

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Intrafile
Fragmentation

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Interfile
Fragmentation

Intrafile
Fragmentation

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Interfile
Fragmentation

Intrafile
Fragmentation

Measuring Aging
time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Interfile
Fragmentation

Intrafile
Fragmentation

Then normalize per gigabyte read

Do modern file
systems age?

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

14.3x

Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

Git Workload on ext4 on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

14.3x

Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

2x slowdown

Git Workload on ext4 on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

14.3x

Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

2x slowdown

4x slowdown

Git Workload on ext4 on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

14.3x

Lower is better

Our Setup: Cold Cache, 3.4 GHz Quad Core, 4GiB RAM,
20 GiB HDD partition - SATA 7200 RPM

15 minutes to grep 1.2GiB

Git Workload on ext4 on HDD

How can we be sure this
slowdown is due to aging?

I’m not old. My
directory structure

is different!

How can we be sure this
slowdown is due to aging?

File System Rejuvenation

Idea: Copy same logical state to a new file system
• After each 100 pulls
• Compare grep cost

Aging ext4 with Git on HDD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Aged

Unaged

8.8x

Lower is better

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Aged

Unaged

8.8x

Smaller average file size makes
the unaged 60% slower

Lower is better

Aging ext4 with Git on HDD

Is this specific to ext4?

Btrfs

0

200

400

600

800

F2FS

0

500

1000

1500

2000

ZFS

0

500

1000

1500

2000

XFS

0

200

400

600

800

20.6x 22.4x

2.2x

weird unaged
behavior on XFS

11.8x

Lower is better

Aging other file systems with Git on HDD

Will SSDs save us?

Git Workload on XFS on SSD

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

10

20

30

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Aged

Unaged

Lower is better

1.9x

Git Workload on SSD
Btrfs

0

10

20

30

ext4

0

10

20

30

ZFS

0

10

20

30

40

F2FS

0

10

20

30

2.2x

Lower is better

1.5x

Btrfs

0

10

20

30

ext4

0

10

20

30

ZFS

0

10

20

30

40

F2FS

0

10

20

30

2.2x

Lower is better

1.5x

ZFS and ext4 slow down with
smaller average file size

Git Workload on SSD

Btrfs

0

10

20

30

ext4

0

10

20

30

ZFS

0

10

20

30

40

F2FS

0

10

20

30

2.2x

Lower is better

1.5x Told
ya!

ZFS and ext4 slow down with
smaller average file size

Git Workload on SSD

Aging is real

Btrfs, ext4, F2FS, XFS, ZFS all age
• Up to 22x on HDD
• Up to 2x on SSD

Git lets us replay a real development history
• Induce aging by simulating years of use
• Takes between 5 hours and 2 days
• Download these scripts from betrfs.org

How can we
prevent aging?

Intrafile Fragmentation:
Avoid breaking large files into small fragments

Design goals to address fragmentation

Intrafile Fragmentation:
Avoid breaking large files into small fragments

Interfile Fragmentation:
Cluster logically related small files

Design goals to address fragmentation

Intrafile Fragmentation:
Avoid breaking large files into small fragments

Interfile Fragmentation:
Cluster logically related small files

Design goals to address fragmentation

What do we mean by small?

Read Length vs Bandwidth

Ba
nd

w
id

th
 in

 M
iB

/s
ec

0.1

1

10

100

1000

Sequential Read Length

4K
iB

8K
iB

16
KiB

32
KiB

64
KiB

12
8K

iB

25
6K

iB

51
2K

iB
1M

iB
2M

iB
4M

iB
8M

iB
16

MiB
32

MiB
64

MiB

12
8M

iB

25
6M

iB

HDD

Higher is better

I/O Size vs Effective Bandwidth

Read Length vs Bandwidth

Ba
nd

w
id

th
 in

 M
iB

/s
ec

0.1

1

10

100

1000

Sequential Read Length

4K
iB

8K
iB

16
KiB

32
KiB

64
KiB

12
8K

iB

25
6K

iB

51
2K

iB
1M

iB
2M

iB
4M

iB
8M

iB
16

MiB
32

MiB
64

MiB

12
8M

iB

25
6M

iB

SSD

HDD

Higher is better

I/O Size vs Effective Bandwidth

Read Length vs Bandwidth

Ba
nd

w
id

th
 in

 M
iB

/s
ec

0.1

1

10

100

1000

Sequential Read Length

4K
iB

8K
iB

16
KiB

32
KiB

64
KiB

12
8K

iB

25
6K

iB

51
2K

iB
1M

iB
2M

iB
4M

iB
8M

iB
16

MiB
32

MiB
64

MiB

12
8M

iB

25
6M

iB

SSD

HDD

Higher is better

I/O Size vs Effective Bandwidth

Intrafile Fragmentation:
Avoid breaking large files into small fragments

Interfile Fragmentation:
Cluster logically related small files

Design goals to address fragmentation

Prediction: 4MiB chunks will
substantially reduce aging

Testing this with Btrfs

64

37 86

58 72

63 67

65

90 91

68 69

93 98

74 92

67 71

7066

Metadata and small files
are stored in a B-tree

Large files get written
elsewhere

Big
File Bigger File Large File

Btrfs: Larger leaves = less aging?

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

150

300

450

600

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

4k

8k
16k
32k
64k

Bigger leaves does mean
less aging!

Btrfs allows leaf size to be configured
between 4KiB and 64KiB.

lower is better

Btrfs Leaf Size Performance

Cost of large leaves

Why don’t B-tree usually
have big leaves?

Because making small changes to
big leaves causes a lot of writing

Btrfs Leaf Size Writing

Bl
oc

ks
 W

rit
te

n
in

 T
ho

us
an

ds

0

75

150

225

300

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

4k
8k

16k
32k

64k
Bigger leaves do mean

more writing

lower is better

Btrfs allows leaf size to be configured
between 4KiB and 64KiB.

B-Tree Performance Tradeoff

More Aging 🙁

Less Writing 😀

Large LeavesSmall Leaves

Less Aging 😀

More Writing 🙁

B-Tree Performance Tradeoff

More Aging 🙁

Less Writing 😀

Large LeavesSmall Leaves

Less Aging 😀

More Writing 🙁

This tradeoff is inherent to B-trees

Other File System Types

Update-in-place

Log-structured

Write-Optimized

Must other types of file systems age?

See the paper

BεtrFS

BεtrFS

BεtrFS packs small
logically related data in a
Bε-tree with 4MiB nodes.

BεtrFS

BεtrFS packs small
logically related data in a
Bε-tree with 4MiB nodes.

BεtrFS

BεtrFS packs small
logically related data in a
Bε-tree with 4MiB nodes.

Bε-trees batch updates which
allows leaves to be big without

increasing the amount of writing

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

200

400

600

800

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Git on BetrFS on HDD

Lower is better

BetrFS

XFS

ext4/F2FS/ZFS
Btrfs

F2FS

ZFS

ext4 Btrfs

XFS

— Aged
— Unaged

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

20

40

60

80

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better

BetrFS

Git on BetrFS on HDD

— Aged
— Unaged

Btrfs

F2FS
ext4

ZFS

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

20

40

60

80

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better

BetrFS

Git on BetrFS on HDD

— Aged
— Unaged

Btrfs

F2FS
ext4

ZFS

And SSDs?

Ti
m

e
in

 s
ec

on
ds

 /
G

iB

0

10

20

30

Git pulls performed

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

Lower is better

Btrfs

— Aged
— Unaged

BetrFS

ZFS

ext4

XFS
F2FS

Btrfs

ZFS

F2FS/XFS/ext4

Git on BetrFS on SSD

How to prevent aging

Batch updates to avoid
too much writing

Rewrite to keep related
data in large blocks

Conclusion

Aging is avoidable

It’s easy to age file systems
quickly and substantially

Thank you!

Alex Conway

alexander.conway@rutgers.edu

betrfs.org

mailto:alexander.conway@rutgers.edu
http://betrfs.org

