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File System Aging

Aging is fragmentation over time

Performance



In this talk

Do file systems age?

What can we do about it?
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Is aging a problem?

Aging happens in real filesystems 
• Smith and Seltzer (’97) 

Benchmarks should incorporate aging 
• Zhu, Chen and Chiueh (’05) 
• Agrawal, A. Arpaci-Dusseau and R. Arpaci-Dusseau (’09)

Yep



Is aging a problem?

YepNope



Let’s do some 
science!
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Server workload 

Synthetic workloads

We use three different workloads

See the paper

Inducing Aging
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get coffee

git pull

git pull
make
get coffee
git pull
add awesome features
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git pull
fix bugs
...

We can simulate a developer by replaying Git histories



Simulating a Developer



Simulating a Developer

Use the Linux kernel repo from github.com

Do 100 git pulls

Measure Performance

http://github.com
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Measuring Aging
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Then normalize per gigabyte read



Do modern file 
systems age?
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I’m not old. My 
directory structure 

is different!

How can we be sure this 
slowdown is due to aging?



File System Rejuvenation

Idea: Copy same logical state to a new file system 
• After each 100 pulls 
• Compare grep cost 



Aging ext4 with Git on HDD
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Is this specific to ext4?
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Will SSDs save us? 



Git Workload on XFS on SSD
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Git Workload on SSD
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Aging is real

Btrfs, ext4, F2FS, XFS, ZFS all age 
• Up to 22x on HDD 
• Up to 2x on SSD  

Git lets us replay a real development history 
• Induce aging by simulating years of use 
• Takes between 5 hours and 2 days 
• Download these scripts from betrfs.org 



How can we 
prevent aging?
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Avoid breaking large files into small fragments

Design goals to address fragmentation
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Intrafile Fragmentation: 
Avoid breaking large files into small fragments

Interfile Fragmentation: 
Cluster logically related small files

Design goals to address fragmentation

What do we mean by small?
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Intrafile Fragmentation: 
Avoid breaking large files into small fragments

Interfile Fragmentation: 
Cluster logically related small files

Design goals to address fragmentation

Prediction: 4MiB chunks will 
substantially reduce aging



Testing this with Btrfs
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Btrfs: Larger leaves = less aging?
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Cost of large leaves

Why don’t B-tree usually 
have big leaves?

Because making small changes to 
big leaves causes a lot of writing



Btrfs Leaf Size Writing
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B-Tree Performance Tradeoff

More Aging 🙁

Less Writing 😀
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Less Aging 😀
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B-Tree Performance Tradeoff

More Aging 🙁

Less Writing 😀

Large LeavesSmall Leaves

Less Aging 😀

More Writing 🙁

This tradeoff is inherent to B-trees



Other File System Types

Update-in-place 

Log-structured 

Write-Optimized

Must other types of file systems age?

See the paper

BεtrFS



BεtrFS

BεtrFS packs small 
logically related  data in a 
Bε-tree with 4MiB nodes.
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BεtrFS

BεtrFS packs small 
logically related  data in a 
Bε-tree with 4MiB nodes.

Bε-trees batch updates which 
allows leaves to be big without 

increasing the amount of writing
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And SSDs?
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How to prevent aging

Batch updates to avoid 
too much writing

Rewrite to keep related 
data in large blocks



Conclusion

Aging is avoidable

It’s easy to age file systems 
quickly and substantially



Thank you!

Alex Conway

alexander.conway@rutgers.edu

betrfs.org

mailto:alexander.conway@rutgers.edu
http://betrfs.org

