
HENG ZHANGHENG ZHANG, MINGKAI DONG, HAIBO CHEN

Institute of Parallel and Distributed Systems
Shanghai Jiao Tong University, China

http://ipads.se.sjtu.edu.cn/pub/projects/cocytus

Efficient and Available In-memory KV-Store with
Hybrid Erasure Coding and Replication

CocytusCocytus

42 pages 1

In-memory KV-Stores: Key Building Blocks for Systems

• A key pillar for many systems
• Data cache (e.g., Memcached in Facebook)
• In-memory database

• Availability is important for in-memory KV-Stores
• Services disruption
• Recovery is time-consuming

242 pages

Primary-backup Replication (PBR)

• A common way to achieve
availability
• E.g., Repcached, Redis

• Problems
• Need M times extra memory to tolerate

M failures
• Redundant data is rarely accessed in

strongly consistent systems

342 pages

Primary

Backup Backup Backup

Client

Request

Update

Erasure Coding (EC)

• A space-efficient way to prevent
data loss

• Widely used in disk storage
• RAID (Redundant Array of Independent Disks)
• WAS (Windows Azure Storage)

• Data repair needs to collect data
and decode them
• A lot of computing work and data transfer

442 pages

Data
Node

Parity
Node

Parity
Node

Parity
Node

Client

Update

Update

Data
Node

Data
Node

Opportunity

542 pages

• Large network bandwidth
• Reaches 10Gb/s and 40Gb/s

• Fast speed of CPUs
• Encoding/Decoding rates can also reach 40Gb/s on single core

Goal

Erasure Coding + In-memory KV-StoresErasure Coding + In-memory KV-Stores

Available and Memory Efficient
In-memory KV-stores

Available and Memory Efficient
In-memory KV-stores

642 pages

Intuited System Design

• K nodes for storing data
• M nodes for storing parity
• Each key-value pair is totally stored on one data node

• friendly for GET requests

42 pages 7

Key-Value

NODE1 NODE2 NODE3 NODE4 NODE5

… …
Key-
Value P1 P2

UPDATESET

Challenges

• Excessive metadata update

• Race condition in online recovery

842 pages

Excessive Update on Metadata

• Metadata is usually achieved by scattered and linked
data structure
• E.g., hash table and binary search tree (BST), two popular data

structures for in-memory index

942 pages

KV-Pair

bucket bucket bucket bucket bucket bucket

KV-Pair

KV-Pair KV-Pair

KV-Pair

KV-Pair

KV-Pair

KV-Pair

KV-Pair

KV-Pair

KV-Pair

KV-Pair KV-Pair

KV-Pair

KV-Pair

KV-Pair

KV-Pair KV-PairKV-Pair

KV-Pair

Excessive Update on Metadata

• Metadata is usually achieved by scattered and linked
data structure
• Operations on metadata involve many scattered

modifications
• About 4 scattered modifications on allocating memory
• About 7 scattered modifications on freeing memory
• About 4 scattered modifications on inserting new item into bucket

hash table
• O(N) scattered modifications on resizing of hash table

1042 pages

Excessive Update on Metadata

• Metadata is usually achieved by scattered and linked
data structure
• Operations on metadata involve many scattered

modifications
• Erasure coding is not a good choice for metadata

• Complicated implementation
• A SET request involve encoding/transfer for 7-14 scattered changes
• Limit new metadata design

1142 pages

Solution: Separate data and metadata

• Use erasure coding to prevent data (values) loss
• Pre-allocate virtual memory areas for data and parity
• Modifications on these areas agree with erasure coding

approach

• Use primary-backup replication to prevent metadata loss
• Index information and allocation information are placed on

outside of the area

1242 pages

Race Condition in Online Recovery
• Handle GET/SET requests during recovery
• Handling SET request involves update on multiple nodes
• Data repair needs to collect data and parity among nodes

1342 pages

Data
Node

Parity
Node

Parity
Node

Client

Update

Failed
Data
Node

Data
Node

Update

Update

Recover
Data

Collect data Collect parity

Race Condition in Online Recovery
• The interleaving of SET requests and data repair has race condition

1442 pages

* The f1() and f2() is encoding functions
* The g1() is a decoding function
* The collected parity P1 loses the new update

Data
Node
D2=1

Parity
Node

P1=f1(2,1,3)

Parity
Node

P2=f2(2,1,3)

Client

 SET D2=5

(Failed)
Data
Node
D1=2

Data
Node
D3=3

Recover
Data

 D2=5 D3=3 P1=f1(2,1,3)

D1 = g1(f1(2,1,3), 5, 3) != 2

Online Recovery Protocol

• Use logical timestamp to indicate the version of data
• Attach timestamps on SET requests
• In-order completion

• Three steps for data collection
1. Start procedure
2. Decide data versions
3. Synchronize parity version

1542 pages

Data
Node
T=1

Parity
Node

T=
<3,1,2>

Parity
Node

T=
<3,1,2>

Failed
Data
Node
T=3

Data
Node
T=2

Recovery
Process

�
�

�
�

�

Cocytus Overview

42 pages 16

EC-Group

• EC-Group is the basic component in Cocytus
• A EC-Group consists K data processes and M parity processes
• Connected by a FIFO channel like a TCP connection

1742 pages

EC-GROUP
DP1

M
1

D1

DP2

M
2

D2

DP3

M
3

D3

PP1

M
1

PP2

M
1

M
2

M
2

M
3

M
3

P1 P2

Data Process

• Metadata
• Index information
• Allocation information

• Data area
• A memory area for values

• Logical timestamps
• A Timestamp for the latest Received SET request (RT)
• A Timestamp for the latest Stable (completed) SET request (ST)

1842 pages

Data Process

D

M

RT: 0

ST: 0

Parity Process

• Metadata replicas of all data processes in the
EC-Group

• Parity area
• A memory area for parity

• Logical timestamps
• A Timestamp Vector for the latest Received SET requests

(RVT[1..K])
• A Timestamp Vector for the latest Stable (completed) SET

requests (SVT[1..K])

1942 pages

Parity Process

P

M
1

M
2

M
3

RVT: 0,0,0

SVT: 0,0,0

Workloads Imbalance

2042 pages

• Data processes and parity processes have different work
• Data processes and parity processes reserve memory in

different size

• Solution: interleaved layout

NODE

EC-GROUP
DP DP DP PP PP

EC-GROUP
DPDP DP PPPP

EC-GROUP
DP DPDPPPPP

EC-GROUP
DPDP DPPP PP

EC-GROUP
DP DP DPPPPP

NODE NODE NODE NODE

Handling SET Requests

42 pages 21

Handling a SET Request

1. Dispatch to a data process

2242 pages

Data Process

D2

M
2

Parity Process

P1

M
1

M
2

M
3

RT: 0

ST: 0

RVT: 0,0,0

SVT: 0,0,0

Parity Process

P2

M
1

M
2

M
3

RVT: 0,0,0

SVT: 0,0,0

�

Handling a SET Request

1. Dispatch to a data process
2. Handle the request on the data

process
1. Generate data diff
2. Update the timestamp
3. Forward request

2342 pages

Data Process

D2

M
2

Parity Process

P1

M
1

M
2

M
3

RT: 1

ST: 0

RVT: 0,0,0

SVT: 0,0,0

Parity Process

P2

M
1

M
2

M
3

RVT: 0,0,0

SVT: 0,0,0

�

�

�

�

�

Handling a SET Request

1. Dispatch to a data processes
2. Handle the request on the data

process
3. Handle the request on parity

processes
1. Buffer the request
2. Update the timestamps
3. Send ACKs

2442 pages

Data Process

D2

M
2

Parity Process

P1

M
1

M
2

M
3

RT: 1

ST: 0

RVT: 0,1,0

SVT: 0,0,0

Parity Process

P2

M
1

M
2

M
3

RVT: 0,0,0

SVT: 0,0,0

��

Handling a SET Request

2. Handle the request on the data
process

3. Handle the request on parity
processes

4. Complete the request on the
data process
1. Update in place
2. Update the timestamp
3. Send commit requests

2542 pages

Data Process

D2

M
2

Parity Process

P1

M
1

M
2

M
3

RT: 1

ST: 1

RVT: 0,1,0

SVT: 0,0,0

Parity Process

P2

M
1

M
2

M
3

RVT: 0,1,0

SVT: 0,0,0

�

�

Handling a SET Request

3. Handle the request on parity
processes

4. Complete the request on the
data process

5. Complete the request on parity
processes
1. Update corresponding metadata
2. Update parity area with diff
3. Update SVT

2642 pages

Data Process

D2

M
2

Parity Process

P1

M
1

M
2

M
3

RT: 1

ST: 1

RVT: 0,1,0

SVT: 0,1,0

Parity Process

P2

M
1

M
2

M
3

RVT: 0,1,0

SVT: 0,0,0

�

�

�

Recovery

42 pages 27

Online Recovery

• When a data process fails, Cocytus chooses a recovery
process from parity processes
• Start two-phases recovery
• Provide continuously services

• Two-phases recovery
• Preparation: synchronize parity processes
• Online data repair: repair the data area while handling requests

• Choose a recovery leader on multiple failures

2842 pages

Preparation

• The recovery process synchronizes stable timestamp for
the failed data process

1. collect corresponding RVT[i]s from all parity processes, where i is the
failed data node

2. choose the minimal one to be the synchronized stable timestamp
3. broadcast the synchronized stable timestamp to other parity

processes

• Parity processes complete the buffered requests that
• contain equal or smaller timestamps than the synchronized stable

timestamp
• come from the failed data processes

2942 pages

After preparation phase, all parity processes are
consistent in the failed data process

Preparation

• The recovery process synchronizes stable timestamp for
the failed data process

1. collect corresponding RVT[i]s from all parity processes, where i is the
failed data node

2. choose the minimal one to be the synchronized stable timestamp
3. broadcast the synchronized stable timestamp to other parity

processes

• Parity processes complete the buffered requests that
• contain equal or smaller timestamps than the synchronized stable

timestamp
• come from the failed data processes

3042 pages

Online Data Repair

• Data area is repaired in a granularity of 4KB page

• Page repair happens
• When requests need touch a lost page
• In the background

• Under online recovery protocol

3142 pages

Recovery Protocol
Recovery leader
1. Choose the parity participant
2. Notify alive data processes

3242 pages

DP3 DP4

DP1 (FAIL) DP2 (FAIL)

PP1 PP2

1

22

Recovery Protocol
Data processes
1. Decide stable timestamp
2. Send data page

Parity processes
1. Synchronize the stable timestamps
2. Do partial decoding

3342 pages

DP3 DP4

DP1 (FAIL) DP2 (FAIL)

PP1 PP2

1

22

3 3

3 3

SVT=2,2,1,6
ST=7ST=3

SVT=2,2,1,6

SVT=2,2,1,7 SVT=2,2,1,7

SVT=2,2,3,7 SVT=2,2,3,7

Recovery Protocol
Parity processes
1. send partially decoded parity

3442 pages

DP3 DP4

DP1 (FAIL) DP2 (FAIL)

PP1 PP2

1

22

3 3

SVT=2,2,1,6
ST=7

SVT=2,2,1,6

SVT=2,2,1,7 SVT=2,2,1,7

3 3
SVT=2,2,3,7 SVT=2,2,3,7

4

Recovery Protocol
Recovery leader
1. Complete the decoding
2. Send recovered data pages to

other recovery processes

3542 pages

DP3 DP4

DP1 (FAIL) DP2 (FAIL)

PP1 PP2

1

22

3 3

SVT=2,2,1,6
ST=7

SVT=2,2,1,6

SVT=2,2,1,7 SVT=2,2,1,7

3 3
SVT=2,2,3,7 SVT=2,2,3,7

4

5

Implementation

• Cocytus is implemented on Memcached 1.4.21
• Implement a similar primary-backup replication version for comparison

• Coding Scheme
• Reed-Solomon code provided by Jerasure

3642 pages

Evaluation
• 5-node cluster for server

• 5 EC-Groups for Cocytus, each contains 3 DPs and 2 PPs
• 15 primary processes and 30 backup processes for primary-backup

replication version
• 15 original processes for Memcached

• 1 node for client, 20 cores
• Run YCSB benchmark with 80 threads

• 10Gbps network

3742 pages

Memory Consumption

*ZIPF: Zipfian distribution over the range from 10B to 1KB
3842 pages

Recovery
(R:W=95%:5% & 1KB-size value & 12GB data/node)

Recovery completes1st failure

2nd failure

3942 pages

CPU Overhead

Read:Write
Memcached PB Replication Cocytus

15 processes 15 primary
processes

30 backup
processes

15 data
processes

10 parity
processes

50%:50% 231%CPUs 439%CPUs 189%CPUs 802%CPUs 255%CPUs

95%:5% 228%CPUs 234%CPUs 60%CPUs 256%CPUs 54%CPUs

100%:0% 222%CPUs 230%CPUs 21%CPUs 223%CPUs 15%CPUs

4042 pages

Related Work

• Separation of work
• GnothiATC’ 12, UpRightSIGOPS’ 09 …

• Erasure coding
• WASATC’ 12, XORing ElephantsVLDB’ 13 …

• Replication
• MojimASPLOS’ 15, RAMCloudSOSP’ 11 …

• Key-value stores
• PilafATC’13, FaRMNSDI’14, HERDSIGCOMM’14, and C-HintSoCC’14 …

4142 pages

Conclusion
• Replication approach is quit memory-consuming for in-memory KV-Stores

• Cocytus combines erase coding and replication to achieve efficient and
available in-memory KV-Store

• Cocytus could achieve better memory efficiency with low overhead
compared with primary-backup replication on read-mostly workloads

4242 pages

Thanks
http://ipads.se.sjtu.edu.cn

