
The Composite-File File System: 
Decoupling the One-to-one Mapping of 

Files and Metadata for Better Performance

Shuanglong Zhang, Helen Catanese, Andy An-I Wang
Computer Science Department, Florida State University

02/23/2016

1



Overview

• Current state
• One-to-one mapping of a logical file and its physical metadata and 

data representations

• Observations
• Files are accessed in groups

• Tend to be small and share similar metadata

• Composite-File File System (CFFS)
• Many logical files can be consolidated into a single composite file 

with its shared metadata and representation 
• Up 27% performance gain

Introduction Design PerformanceImplementation Conclusion 2



Current State

• Each logical file is mapped to its physical metadata and data 
representations
• Deep-rooted data structures
• Natural granularity for many file system mechanisms

• VFS API, prefetching, etc.

• Suppose we relax this constraint
• Can we create new optimization opportunities?

Introduction Design PerformanceImplementation Conclusion 3



Observations

• Frequent access to small files
• Metadata a major source of overhead for small files (~40%)

• Redundant metadata information
• Potential opportunities to consolidate

• Files accessed in groups
• Why physically represent them separately?

• Limitation of prefetching
• High per-file access overhead (seeking) even with warm cache

Introduction Design PerformanceImplementation Conclusion 4



A Composite File

data blocks data blocks data blocks

file 1

file 2

file 3

i-node with 
consolidated 

metadata

Subfile 1

Introduction Design PerformanceImplementation Conclusion

Subfile 2 Subfile 3

5



Metadata Design Highlights

• Modified i-node namespace (highlighted)
• If number > threshold (e.g, 011)

• Treat zero extended upper bits as i-node numbers
• Treat lower bits as subfile numbers 

• Directory representation
• Names are mapped to modified i-node numbers

• Subfiles’ metadata stored in extended attributes
• Permission:  First check the permission of the composite file, then the 

target subfile

6

Upper bits Lower bits

00 0

00 1

01 0

01 1

10 0

10 1

11 0

11 1

Introduction Design PerformanceImplementation Conclusion



Subfile Operations

• Open/close
• Open the composite file and seek to the offset of target subfile
• Close the entire composite file

• Add a subfile
• Append to the end

• Remove a subfile
• Mark it as freed 

Introduction Design PerformanceImplementation Conclusion 7



Subfile Operations (cont.)

• Read/write operation
• Read from the starting offset of the subfile, bounded by subfile size
• Write from the starting offset of the subfile, bounded by subfile size

• May move to the end if there is not enough space

• Space compaction
• When half of the space of a composite file is marked as freed

Introduction Design PerformanceImplementation Conclusion 8



Ways to Form Composite Files

• Directory-based consolidation
• Groups all files in one directory

• Embedded-reference-based consolidation
• Groups files based on the extracted references (e.g., URLs)

• Frequency-mining-based consolidation
• Based on variants of Apriori Algorithm

• Frequently encountered file request sequences must contain frequently 
encountered subsequences 

Introduction Design PerformanceImplementation Conclusion 9



CFFS Components

Introduction Design PerformanceImplementation Conclusion 10



Empirical Evaluation

• Prototyped CFFS via FUSE+ext4
• Use hardlinks to map multiple file names to the composite file i-node
• Use extended attributes to store consolidated metadata

• FUSE+CFFS+ext4 vs. FUSE+ext4
• Workloads
• 3-month long web server trace, 11-day long software development 

trace
• Zero-think time replays

Introduction Design PerformanceImplementation Conclusion 11



Web Server Latency
HDD SSD

Introduction Design PerformanceImplementation Conclusion 12



Software Development Trace Replays

Introduction Design PerformanceImplementation Conclusion 13



Conclusion

• CFFS decouples the one-to-one mapping of files and 
metadata
• Increases throughput up to 27%
• Reduces latency up to 20%

• The CFFS approach is promising

Introduction Design PerformanceImplementation Conclusion 14


