
Disks and their Cloudy Future
Eric Brewer
VP Infrastructure, Google

February 23, 2016@eric_brewer FAST 2016 Keynote

1GB per hour ⇒ 1 PB new storage every day
 (+ multiple copies, multiple formats)

10x every 5 years

400 hours uploaded
every minute

(Nov 2015)

Most disks will be “Data Center” Disks
Not just YouTube

● Many fast growing storage services
● Google alone also has Drive, Photos, GMail, Cloud, ...

Plus “big data” moving to the Cloud

At the same time, less use of (spinning) disks in PCs
 and none in mobile

“Disks for Data Centers” White Paper
Released this morning to go with this talk:
 http://research.google.com/pubs/pub44830.html (you can Google it by title)

 With Lawrence Ying, Lawrence Greenfield, Robert Cypher and Theodore T’so

Covers this material in greater depth

 Start of a broad open discussion on “data center” disks

What’s different in a Data Center?
1) Collection View

● Disks are always part of a large collection
● Optimize for the collection, not the server

2) Focus on Tail Latency
● Live services: users are waiting for data
● Metric: 99th-percentile read latency

Current Tail Latency is Poor
Reading data: mean = 10 ms

99% = 100s of ms
99.9% = seconds

Lots of reasons, but disk tells you little (we need profiling)
● sector remapping
● writes delaying reads
● non-data commands
● background tasks in the firmware

http://research.google.com/pubs/pub44830.html

Tail Latency: Parallel Requests
Sometimes we send the same request to multiple disks

● Wastes some work
● But can still be worthwhile for tail latency

Sometimes we cancel pending requests
● … because we got the answer elsewhere
● Limits the wasted work
● Works more often than you might think

Five Metrics for Data-Center Disks
1. Higher I/Os per second (IOPS), typically limited by seeks,
2. Higher capacity, in GB
3. Lower tail latency
4. Meet security requirements, and
5. Lower total cost of ownership (TCO).

(these are not too novel)

Collection View: Many Layers
Geographic Replication

N+1 coding
Data Center ● 10s of locations, async replication

● Different jurisdictions
● “Near” to users (lower latency)

Server ● 10,000+ servers per DC
● Replication within data center
● Load balancing, data repair

replication or coding

● 10s of disks/server
● Shared network/CPU
● No replication within server
● Data encrypted at rest

on-disk coding

Collection View: Durability
Disk promises < 1 in 1015 bit error rate (incredible)

● Extensive retries & complex coding
● Background scanning and rewrites

But we already have copies elsewhere!
● Maybe OK to lose a little (more) data

… if we can trade it for capacity or tail latency

(variation of the “end to end” principle)

Philosophy of New APIs
Goals:
● Control over timing of background work (for tail latency)
● Leverage the disk’s extra knowledge of details

○ E.g. what tracks are at risk?

● Teach disk about prioritization, but let it do the scheduling
○ It knows the mechanics

● … but still an abstraction layer
 with multiple implementations

API: Retry Policy
Goal: per-read retry policy

1. Traditional: “really try hard”
Use all possible mechanisms to get the data

2. Fast: “limited retry”
Try to read, but fail quickly if you cannot

Improves tail latency (& we have the data elsewhere)
● Can be used with parallel reads
● Can use 1 after 2 if needed

API: Background Work
Lots of background work to do...
Idea: host controls timing, but not details

● Disk provides data on need for background work
● Host periodically schedules such work

○ … When it will not hurt tail latency
○ Or ideally host can cancel background work if needed

● If host forgets, timer expires & disk can do it
○ But the host should not let this happen

API: fine-grain labeling
We label all I/Os:
● Low latency
● Throughput (think batch workloads)
● Best Effort (background data movement)

We have quotas for the first two (admission control)
● Prerequisite to low tail latency

We track them throughout the systems

API: fine-grain scheduling
If disk doesn’t know about labels
 ... we have to give it one or few I/Os at at time (!)
 Otherwise, low latency reads might get delayed

Native Command Queuing (NCQ) is partial solution
● But we need per-IO labels and latency targets
● Host should manage quotas via throttling
● Disk should manage I/O reordering based on labels
● Implies real-time scheduler in the disk with reorering

Collection View: Aggregate Mix
We always mix a variety of drives
 in part due to incremental deployment of new drives

We have overall goals for total IOPS and capacity

We select new disks
 to bring the overall fleet mix closer to our goals

Collection View: Aggregate Mix

G
B

/$

IOPS/GB0

F

E

F strictly better
than E

Collection View: Aggregate Mix

G
B

/$

IOPS/GB0

F

E

Platter
size

Bigger platters: more GB/$, less IOPS/GB

Smaller platters:
 less GB/$,
 more IOPS/GB

Collection View: Aggregate Mix

G
B

/$

IOPS/GB0

F

E

RPM

Slower: more GB/$, less IOPS/GB

Faster:
 less GB/$,
 more IOPS/GB

Collection View: Aggregate Mix

G
B

/$

IOPS/GB0

C
D

F

E

Achieve target IOPS/GB with
a mix of C and D

Collection View: Aggregate Mix

G
B

/$

IOPS/GB0

A

B

C
D

F

H

G

E

Optimal mix is top edges of
convex hull

Collection View: Flexible capacity
We don’t need precisely 6TB…

● Just tell us how many sectors are good
● Don’t hold any back (disk will get “smaller” over time)

We don’t even need constant size over time…
● OK to mark sectors bad

○ please don’t remap them to other tracks

● OK to drop capacity when a head/platter dies
○ (might have to reformat to create a new smaller drive)

What about SSDs?
We use them… for caching and high-performance workloads

But not shifting to them en masse anytime soon…
● Cost per GB is too high
● SSDs and HDDs both have good capacity growth rates

○ Hard for SSDs to catch up soon

● SSDs have limited program-erase cycles

Most of our storage will be disks for at least 5-10 years

Source of modern disk dimensions:
The 3½” PC floppy disk

Wikipedia, Medvedev CC-BY-SA 3.0

(might not be optimal)

https://creativecommons.org/licenses/by-sa/3.0/legalcode

Physical Changes
Changing the form factor is a long process
 (… and kind of why I am here)
Seems fruitful and getting more so every year…

● What dimensions?
● What power distribution?
● How many heads per platter? Multiple actuators?

Data center volume is high enough to justify a change

Taller Drives?
Assume a fixed total platter area

Taller drives:
 ⇒ smaller platters, faster RPM & seeks ⇒ higher IOPS
 ⇒ more platters ⇒ lower GB/$

Areal density improvements ⇒ this a better tradeoff over time

Multi-disk packages?
Not integrated systems like appliances
Instead:

● Multiple disks in combined enclosure
● Combined power distribution
● Shared RAM caching
● Perhaps PCI-E interface

Improves GB/$ at similar IOPS/GB (Maybe 4 disks?)

Summary
Most disks will be in data centers

● Optimize the collection, not the server
● (read) tail latency is really important

Need APIs for vertical integration
● Combine global view with disk’s local knowledge
● Disk is more mechanisms and feedback
● Policies in higher-level systems

New form factor(s) probably make sense
Start of a broad, open discussion

