Efficient MRC Construction with SHARDS

Carl Waldspurger Nohhyun Park
Alexander Garthwaite Irfan Ahmad

CloudPhysics, Inc.

USENIX Conference on File and Storage Technologies
February 17, 2015
Motivation

• Cache performance highly non-linear
• Benefit varies widely by workload
• Opportunity: dynamic cache management
 – Efficient sizing, allocation, and scheduling
 – Improve performance, isolation, QoS
• Problem: online modeling expensive
 – Too resource-intensive to be broadly practical
 – Exacerbated by increasing cache sizes
Modeling Cache Performance

- Miss Ratio Curve (MRC)
 - Performance as $f($size$)$
 - Working set knees
 - Inform allocation policy
- Reuse distance
 - Unique intervening blocks between use and reuse
 - LRU, stack algorithms
MRC Algorithm Research

Mattson Stack Algorithm
single pass
\(O(M), O(NM)\)

Bennett & Kruskal
balanced tree
\(O(N), O(N \log N)\)

Kessler, Hill & Wood
set, time sampling
\(O(M), O(N \log M)\)

Olken
tree of unique refs
\(O(M), O(N \log M)\)

UMON-DSS
hw set sampling

PARDA
parallelism

SHARDS
spatial hashing
\(O(1), O(N)\)

Bryan & Conte
cluster sampling

RapidMRC
on-off periods
\(O(\log M), O(N \log M)\)

Space, Time Complexity
\(N = \text{total refs}, M = \text{unique refs}\)
Key Idea

• Track only a *small subset* of blocks
 – Filter input to existing algorithm
 – Run *full* algorithm, using only sampled blocks
 – Cheap/accurate enough for practical online MRCs?

• SHARDS approximation algorithm
 – Randomized spatial sampling
 – Uses hashing to capture all reuses of same block
 – High performance in tiny constant footprint
 – Surprisingly accurate MRCs
Spa0ally	
 Hashed	
 Sampling

USENIX	
 FAST	
 '15

L_i → hash(L_i) mod P → T_i

randomize

sample?

< T → process

no → skip

yes

sampling rate R = T / P

subset inclusion property maintained as R is lowered

CloudPhysics, Inc.

USENIX FAST '15

6
Basic SHARDS

Each sample statistically represents $1/R$ blocks
Scale up reuse distances by same factor

randomize sample? compute distance scale up

$L_i \rightarrow \text{hash}(L_i) \mod P \rightarrow T_i < T \rightarrow \text{yes} \rightarrow \text{Standard Reuse Distance Algorithm} \rightarrow \div R$

$\rightarrow \text{no} \rightarrow \text{skip}$

CloudPhysics, Inc.
USENIX FAST '15
SHARDS in Constant Space

1. **randomize**
 - $L_i \rightarrow T_i$
 - hash(L_i) mod P

2. **sample?**
 - $< T$
 - Standard Reuse Distance Algorithm
 - yes -> scale up
 - sample set

3. **compute distance**
 - $\div R$

4. **scale up**

evict samples to bound set size

- lower threshold $T = T_{\text{max}}$
- reduces rate $R = T / P$

CloudPhysics, Inc. USENIX FAST '15 8
Example SHARDS MRCs

- Block I/O trace *t04*
 - Production VM disk
 - 69.5M refs, 5.2M unique
- Sample size s_{max}
 - Vary from 128 to 32K
 - $s_{max} \geq 2K$ very accurate
- Small constant footprint
- SHARDS\textsubscript{adj} adjustment
Dynamic Rate Adaptation

- Adjust sampling rate
 - Start with $R = 0.1$
 - Lower R as M increases
 - Shape depends on trace

- Rescale histogram counts
 - Discount evicted samples
 - Correct relative weighting
 - Scale by R_{new} / R_{old}
Experimental Evaluation

- Data collection
 - SaaS caching analytics
 - Remotely stream VMware vscsiStats

- 124 trace files
 - 106 week-long traces
 - CloudPhysics customers
 - 12 MSR and 6 FIU traces
 - SNIA IOTTA

- LRU, 16 KB block size
Exact MRCs vs. SHARDS

CloudPhysics, Inc.

USENIX FAST '15
Error Analysis

- Mean Absolute Error (MAE)
 - $|\text{exact} - \text{approx}|$
 - Average over all cache sizes
- Full set of 124 traces
- Error $\propto 1 / \sqrt{s_{\text{max}}}$
- MAE for $s_{\text{max}} = 8K$
 - 0.0027 median
 - 0.0171 worst-case
Memory Footprint

- Full set of 124 traces
- Sequential PARDA
- Basic SHARDS
 - Modified PARDA
 - Memory \(\approx R \times \text{baseline} \) for larger traces
- Fixed-size SHARDS
 - New space-efficient code
 - Constant 1 MB footprint
Processing Time

- Full set of 124 traces
- Sequential PARDA
- Basic SHARDS
 - Modified PARDA
 - $R=0.001$ speedup 41–$1029\times$
- Fixed-size SHARDS
 - New space-efficient code
 - Overhead for evictions
 - $S_{\text{max}} = 8K$ speedup 6–$204\times$
Counter Stacks Comparison

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Memory (MB)</th>
<th>Throughput (Mrefs/sec)</th>
<th>Error (MAE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter Stacks</td>
<td>80.0</td>
<td>2.3</td>
<td>0.0025</td>
</tr>
<tr>
<td>SHARDS $S_{\text{max}}=32K$</td>
<td>2.0</td>
<td>16.9</td>
<td>0.0026</td>
</tr>
<tr>
<td>SHARDS $S_{\text{max}}=8K$</td>
<td>1.3</td>
<td>17.6</td>
<td>0.0061</td>
</tr>
</tbody>
</table>

- **Quantitative**
 - Same merged MSR “master” trace
 - Counter Stacks roughly 7× slower, 40–62× bigger

- **Qualitative**
 - Counter Stacks checkpoints support splicing/merging
 - SHARDS maintains block ids, generalizes to non-LRU
Generalizing to Non-LRU Policies

- Many sophisticated replacement policies
 - ARC, LIRS, CAR, CLOCK-Pro, ...
 - Adaptive, frequency and recency
 - No known single-pass MRC methods!

- Solution: efficient scaled-down simulation
 - Filter using spatially hashed sampling
 - Scale down simulated cache size by sampling rate
 - Run full simulation at each cache size

- Surprisingly accurate results
Scaled-Down Simulation Examples

ARC — MSR-Web Trace

CLOCK-Pro — Trace t04
Conclusions

• New SHARDS algorithm
 – Approximate MRC in $O(1)$ space, $O(N)$ time
 – Excellent accuracy in 1 MB footprint

• Practical online MRCs
 – Even for memory-constrained drivers, firmware
 – So lightweight, can run multiple instances

• Scaled-down simulation of non-LRU policies
Questions?

• {carl,nohhyun,alex,irfan}@cloudphysics.com
• Visit our poster
• BoF 9-10pm tonight in Bayshore West
• Potential academic and industry collaboration
• Application areas include capacity planning, dynamic partitioning, tuning, policies, ...
• We’re also hiring!