Having Your Cake and Eating It Too: Jointly Optimal Erasure Codes for I/O, Storage and Network-bandwidth

K. V. Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B. Shah, Kannan Ramchandran

EECS, UC Berkeley
Redundancy in distributed storage

• For durability and availability of data

• Simplest approach: replication
 – store multiple copies on different machines

• Alternative approach: erasure coding
Erasure coding for distributed storage

• Storage space efficient
 – traditional codes, e.g., Reed-Solomon, optimal
 – maximum fault tolerance for storage overhead

• Another important metric: “maintenance” cost
 – replacing missing/unavailable data
 – quite frequent in distributed storage
 – network and I/O costs

• Traditional codes highly inefficient
Birds-eye view

• Traditional codes highly inefficient in replacing missing/unavailable data

• Considerable amount of on-going research in theory and systems communities

• A powerful class of erasure coding framework optimizes only for storage and network-bandwidth costs

We show how to transform these codes to optimize I/O cost as well
“Reconstruction” costs

I/O & network cost = 1x

(7, 4) Reed-Solomon code
- any 4 out of 7 sufficient

I/O & network cost = 4x
Reed-Solomon Codes

- \((n, k)\)
 - \(k\) data blocks, \((n-k)\) parity blocks
 - any \(k\) out of \(n\) sufficient
 - optimal storage and fault tolerance

- Reconstruction
 - any \(k\) out of the remaining \((n-1)\) blocks

I/O & network cost = \(k \times \) (amount reconstructed)
= \(10x - 20x\) for typical parameters!
Recent research in theory and systems

• **Theory**: Minimum Storage Regenerating codes (Dimakis et al, Shah et al, Rashmi et al, Tamo et al, Wang et al, Papailiopoulos et al, Cadambe et al, etc.); **Local codes** (Gopalan et al, Papailiopoulos et al, Tamo et al, Kamath et al, etc.); **Piggyback** (Rashmi et al); **Rotated-RS** (Khan et al), etc.

• **Systems**: **NCFS & NC-Cloud** (Hu et al), **Xorbas** (Sathiamoorthy et al), **Hitchhiker** (Rashmi et al), **CORE** (Li et al), Andre et al, etc.
Recent research in theory and systems

• **Theory:** Minimum Storage Regenerating codes
 (Dimakis et al, Shah et al, Rashmi et al, Tamo et al, Wang et al, Papailiopoulos et al, Cadambe et al, etc.); Local codes
 (Gopalan et al, Papailiopoulos et al, Tamo et al, Kamath et al, etc.); Piggyback (Rashmi et al); Rotated-RS (Khan et al), etc.

• **Systems:** NCFS & NC-Cloud (Hu et al), Xorbas
 (Sathiamoorthy et al), Hitchhiker (Rashmi et al), CORE (Li et al), Andre et al, etc.
MSR framework

Minimum Storage Regenerating (MSR) framework§

- Theoretical framework that allows optimizing storage and network-bandwidth costs
- Tells what is the minimum amount of transfer required for reconstruction

§Dimakis et al, IEEE Transactions on Information Theory, 2010
MSR framework

Just as in RS, any \(k \) out of \(n \) blocks sufficient to recover all the data

\[\Rightarrow \text{Optimal storage \& fault tolerance} \]
MSR framework

- **k** data blocks
- **n-k** parity blocks

d helpers
- any d of remaining \((n-1)\)
- small amount transferred from each

Total amount of data transferred:
- significantly smaller than RS
- minimum possible
Example: RS vs. MSR

Reed-Solomon (12, 6)

Total transfer = 96 MB

MSR framework with $d = 10$

Total transfer = 32 MB
MSR framework:
• optimizes storage and amount of data transfer
• *but not I/O consumed at helpers*
I/O in MSR Framework

- Not reduced
- Higher than in RS
 - 6 helpers in RS
 - 10 helpers in MSR

MSR framework with $d = 10$
Having your cake and eating it too..

In general, codes under MSR:
• optimal storage and fault tolerance
• optimal network bandwidth
but..
• *do not optimize I/O*

Optimize I/O as well while retaining storage and bandwidth optimality
In this talk

• Two algorithms that together *transform MSR codes into codes that are I/O efficient as well*

 – while retaining storage and bandwidth optimality

 – Algorithm 1: transforms to minimizes I/O cost “locally” at each helper block

 – Algorithm 2: builds on top of Algorithm 1 to minimize I/O cost “globally” across all blocks
Have your cake and eat it too...

• Apply to *Product-Matrix MSR (PM)* codes: a class of *practical MSR codes*

 – *transformed code = “PM_RBT”*

• PM codes exist for parameters:

 – storage overhead ~2x (or higher)
 – provides high (optimal) fault tolerance
 – useful in applications which need high fault tolerance, e.g., peer-to-peer storage

Rashmi et al, IEEE Transactions on Information Theory, 2011
Implementation & Evaluation

• PM and PM_RBT in C

• Evaluation on Amazon EC2 instances

• Use Jerasure2§ and GF-Complete§ for finite-field arithmetic and RS

§Plank et al, 2013, 2014
Amount of data transfer

PM and RBT both have 3.27x lower transfers

- $k = 6$, $d = 11$

PM-RBT retains optimality in network transfers during reconstruction as in PM
Number of IOPS consumed

PM-RBT results in significant savings in IOPS

- $k = 6$, $d = 11$
- RBT:
 - $5x$ lesser IOPS as PM
 - $3x$ lesser IOPS as RS
I/O completion time

- \(k = 6, \ d = 11 \)
- RBT: 5x - 6x faster I/O

PM-RBT results in significantly faster completion of I/O
Algorithm 1
MSR framework:

We would like:

"Reconstruct-by-transfer (RBT)"
Algorithm 1

- Transforms MSR codes to achieve RBT
- Applicable to all MSR codes that satisfy two properties
Property 1: Independence between helpers

Function computed at a helper is *not dependent* on which other blocks are helping

E.g.: \#helpers = 4

![Diagram](image)
When property 1 is satisfied..

A block computes *pre-determined functions* to aid in reconstruction of each of the other blocks.
Property 2: Independence between functions computed at helper block

Any subset of size equal to block size are independent

- for \(k = 3 \), \(d=4 \) as in example, each function is half the block size
- any two of these functions must be independent
Algorithm 1: Precompute and Store

<table>
<thead>
<tr>
<th>block 2</th>
<th>(f_1(b))</th>
<th>(f_3(b))</th>
<th>(f_4(b))</th>
<th>(f_5(b))</th>
<th>(\ldots)</th>
<th>block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>(f_1(b))</td>
<td>(f_3(b))</td>
<td>(f_4(b))</td>
<td>(f_5(b))</td>
<td>(\ldots)</td>
<td>(f_1(b))</td>
</tr>
</tbody>
</table>

- Half block size
- Any 2 independent

block 2 can help reconstruct blocks 1 & 3 in RBT-fashion
Optimal I/O at each RBT-helper

• Under MSR, a block does minimum I/O when helping in RBT-fashion

 amount read = amount transferred

 = minimum possible

 (due to MSR)

 \[f_1(b) \quad f_3(b) \]

 block 2

• Minimum I/O when helping blocks 1 & 3

• For other blocks, reads full block and does computation

 16 MB
How to choose RBT-helper assignment?

- Algorithm 1 takes the assignment of ‘who acts as RBT helper to whom’ as input

block 2

\[f_4(b) \mid f_3(b) \]

16 MB

How to choose this assignment?
Algorithm 2

• Chooses RBT-helper assignment to minimize I/O cost globally across all blocks

• Greedy algorithm

• Optimal!
Algorithm 2: Two extreme cases

• Complete preferential treatment for data blocks
 – *Each block RBT-helps data blocks*
 – “SYS” pattern

• Equality for all: no preferential treatment
 – *Each block RBT-helps following blocks*
 – “CYC” pattern
Impact of the transformation on encoding and decoding speeds
Decoding speed
(computation for reconstruction)

- \(n=2k, \; d = 2k-1 \)
- Single thread

- \(\text{RS}_m \): \(m \) parity blocks and remaining \((k-m)\) data blocks helping

- RBT does not affect the decoding speed of PM
- Similar to RS decoding with two parities
Encoding speed
(parity generation)

- Single thread
- \(n=2k, \ d = 2k-1 \)

- Slower than RS but still practical
- RBT-SYS has higher encoding speed than PM
No “original” data blocks left?

- Use “symbol-remapping” to retain original data blocks

\[
\begin{align*}
&\text{k “original” data blocks} \\
\rightarrow &\quad \text{Symbol remapping} \\
\rightarrow &\quad \text{k “remapped” data blocks} \\
\rightarrow &\quad \text{MSR encoding + Transformation} \\
\rightarrow &\quad \text{k “original” data blocks + parity blocks}
\end{align*}
\]
Summary

• Algorithms to transform MSR codes
 – optimize I/O retaining storage and network optimality

• Implemented and evaluated application onto Product-Matrix MSR codes
 – significant reduction in I/O costs

• Analytical results on optimality
Thanks!

Have cake
Eat it too