F2FS: A New File System for Flask
Storage

Changman Lee, Dongho Shim, Joo-Young Hwang, Sang-yeun Cho
Memory Business Unit,
Samsung Electronics Co., Ltd.

Presented by Joo-Young Hwang
at USENIX FAST 2015

* Introduction
*+ Design
* Flash Friendly On-disk Layout
+ Cost-effective Index Structure
* Multi-head logging
* Cleaning
+ Adaptive Logging
* Recovery
» Evaluation
* Experimental Setup
+ Mobile Benchmark
+ Server Benchmark
* Multi-head Logging Effect
* Cleaning CostAnalysis
+ Adaptive Logging Performance (under aged condition)

» Conclusion

Introduction

#® Random writes is bad to flash storage device.

* Free space fragmentation
- Sustained random write performance degrades
- Lifetime reduced

Sequential write oriented file systems
+ |og-structured file systems, copy-on-write file systems

® Our Contribution

« Design and implementation of a new file system to fully leverage and
optimize the usage of NAND flash solutions (with block interface).

+ Performance comparison with Linux file systems (Ext4, Btrfs, Nilfs2).
— Mobile system and server system

- 3/19 -

Key Design Considerations

Flash-friendly on-disk layout

Cost-effective index structure

Multi-head logging

Adaptive logging

Fsync acceleration with roll-forward recovery

-4/19 -

Flash-friendly On-Disk Layout

® Flash Awareness
« All the FS metadata are located together for locality,
« Start address of main area is aligned to the zone size,
+ File system cleaning is done in a unit of section (FTL's GC unit).

Cleaning Cost Reduction
« Multi-head logging for hot/cold data separation.

Block — 4KB

Random Writes

| Zone | Zone | Zone | Zone |
| section | Section | Section | Section | Section | Section | Section | Section |
Segment Number fe {291 1 1 ¢+ 1 ¢ F 1 1V ¢ 0V 0P ¥ 1 1 v ° 1 1 I
gupe:g:nci :{; :I Check |Segment Info. | Node Address | Segment Summary Main Area
U point Table Table : Area
(CP) (SIT) l‘..‘ (MAT) ',’ (SSA) | | | | | |
 ppm——
Sector #0 {_,.*’ ----- + ----- * - v R 2 v
~._HotyWarm/Cold__-~ Hot/Warm/Cold
Node segments Data segments

- 3/19 -

LFS Index Structure

Update propagationissue: wandering tree

#® Onebiglog

Fixed location

/‘—/‘_‘\

S
B

Segment Usage

Segment Summary

\

Used for cleaning

Inode for
directory

Inode for

Directory data

regular file

Indirect
Pointer block

One big log

I

Direct
Pointer block

- 6/19 -

F2FS Index Structure

Restrained update propagation: node address translation method
® Multi-head log

Fixed location

* NAT: Node Address Table

Inode for

Inode for

regular file

Referenced|via NAT lookup i Fﬂe data

Segment Info. Table
(SIT)

MNode

Segment Summary Used for cleaning

(SSA)

Multiple logs

i

"

-7/19 -

Indirect Referenced via NAT lookup

/

Multi-head Logging

® Data temperature classification
* Node > data
« Direct node > indirect node
» Directory > user file

M Separation of multi-head logs in NAND flash.

Type | Temp. | Objects

Hot | Direct node blocks for directories
Node | Warm | Direct node blocks for regular files
Cold | Indirect node blocks
Hot Directory entry blocks
Warm | Data blocks made by users
Data Data blocks moved by cleaning:
Cold | Cold data blocks specified by users;
Multimedia file data

« Zone-aware log allocation for set-associative mapping FTL mapping.

* Multi-stream interface

Zone-blind Allocation

Zone—aware Allocation

Node blocks:

| |: Data blocks

.--file1 file2_.-*

LBA

-

Hlet file2

LBA

- 8/19 -

Cleaningis done in section unit.
« Sectionto be aligned with FTL's GC unit.

® Cleaning procedure

1. Victim selection: get a victim section through referencing Segment Info.
Table (SIT).

— Greedy algorithm for foreground cleaning job
— Cost-benefit algorithm for background cleaning job

2. Valid block check: load parent index structures of there-in data
iIdentified from Segment Summary Area (SSA).

3. Migration: move valid blocks by checking their cross-reference
4. Mark victim section as “pre-free”.
1. Pre-free sections are freed after the next checkpoint is made.

-9/19 -

Adaptive Logging

Toreducecleaningcost at highly aged conditions, F2FS changes
write policy dynamically.
« Append logging (logging to clean segments)
— Need cleaning operations if there is no free segment.
— Cleaning causes mostly random read and sequential writes.
+ Threaded logging' (logging to dirty segments)

— Reuse invalid blocks in dirty segments

— No need cleaning Threaded logging writes data
— Cause random writes into invalid blocksin segment.
i1
m il I
| . |
segment

* Node is always written with append logging policy.

1. Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh. Optimizations of LFS with slack space recycling and lazy indirect block update. In
Proceedings of the Annual Haifa Experimental Systems Conference page 2, 2010.

- 10/19 -

Sudden Power Off Recovery (1/2)

#m Checkpointandrollback
+ Maintains shadow copy of checkpoint, NAT, SIT blocks
« Recovers the latest checkpoint
+ Keeps NAT/SIT journal in checkpointto avoid NAT, SIT writes

/ faync mark

& i
i
B SSA I
™
file1
NAT/SIT
Journaling
Create dir1 and file1,
Create checkpoint #0,
bitmap refers to valid copy of NAT and SIT giFl*Ez update and fsync done,
Recovery

->= Roll-back to the latest stable checkpoint (#0)
: recover dirl, file1
-= Roll-forward recovery of file2's fsync'ed data

-11/19 -

Sudden Power Off Recovery(2/2)

® Fsynchandling
« On fsync, checkpointis not necessary.
+ Direct node blocks are written with fsync mark.

® Roll-forward recovery procedure
1. Search marked direct node blocks

2. Per marked node block, identify old and new data blocks by checking
the difference between the current and previous node block.

3. Update SIT; invalidate old data blocks
4. Replay new data block writes; update NAT, SIT accordingly
5. Create checkpoint

-12/19 -

m Experimental Setup

System

Storage Devices

CPU: Exynos 5410
Memory: 2GB
OS: Linux 3.4.5
Android: 1B 4.2.2

eMMC 16GB:
2GB partition:
(114, 72, 12, 12)*

Target
* Mobile and server systems
« Performance comparison Mobile
with ext4, btrfs, nilfs2
Server

CPU: Intel 17-3770
Memory: 4GB
OS: Linux 3.14

Ubuntu 12.10 server

SATA SSD 250GB:
(486, 471, 40, 140)*
PCle (NVMe)

960GB:

SSD

(1,295, 922, 41, 254) *

*(Seg-Rd, Seq-Wr, Rand-Rd, Rand-Wr) in MB/s

Target Name Workload Files File size | Threads | R/'W | fsync
i0zone Sequential and random read/write 1 1G 1 S50/50 N
Mobile SQLite Random writes with frequent fsync 2 3.3MB | 0/ 100 Y
Facebook-app | Random writes with frequent £sync 579 852KB 1 1/99 b4
Twitter-app generated by the given system call traces 177 3.3MB 1 1/99 b
videoserver Mostly sequential reads and writes 64 1GB 48 20/80 N
Siria fleserver Many large files with random writes 50.000 128KB 50 70/30 N
varmail Many small files with frequent fsync 8.000 16KB 16 S50/50 Y
olip Large files with random writes and £sync 10 SOOMB 211 1/99 Y

-13/19 -

Mobile Benchmark

® In F2FS, more than 90% of writes are sequential.
® F2FS reduces write amount per fsync by using roll-forward recovery.

» |f checkpointis done per fsync, write amount in SQLite insert test is 37% more
than Ext4, and normalized performance is 0.88.

® Btrfs and nilfs2 performed poor than ext4.
« Birfs: heavy indexing overheads, Nilfs2: periodic data flush
» For lozone-RW, Btrfs, Nilfs2 write 15%, 41% more I/Os than Ext4, respectively.
« Forlozone-RR, Btrfs has 50% more I/Os than other file systems.

46% less writes per 3x more writes by
seq write > 90% fsync over extd heavy indexing
overhead
o o : : 5 _
L RO S BT“/F'Z MlLES = F2fs EXTA mim . BTRFS foomm NILFS2 :'It | Fars EXT4 oo BTAFS s MILFS2 rar
£ 5 Frea ' 2 peeey
E Wl Index overhead Bt g 15| AR
g g). B - Fy
g E A 8 : | : {
_— . = e Fa
E 4 periodic 2 | \ £ !) 1 by R
. ey | [
Tgu data flush ; \ E 5 g N g - N
' 5 : | B =//§ - N\
21 = % ,/f, E os N7 ﬁ‘g :%
- = | | __'-:: |
‘g..-ﬁ 2 ? k| ://; ﬁ\"i :%//
o o] i Py
0 x oL | B 8 RNl | S
ik It Facebock

Sqlite (1000 records, WAL mode)

- 14/19 -

Server Benchmark

® Performance gain of F2FS over Ext4 is more on SATA SSD than on PCle SSD.
« Varmail: 2.5x on the SATA SSD and 1.8x on the PCle SSD
« Oltp: 16% on the SATA SSD and 13% on the PCle SSD

® Discard size matters in SATA SSD due to interface overhead.
 When using small discard (256KB) for F2FS, fileserver performance is degraded

by 18%.
Similar sequential 512KB req: 6.9% Fsync performance
read performance Discard size = 2MB
¥ +F / . . 2.5 . : : .
F2F5 LH] EXT#" R ELTII}F'S === NILFS2 —=—=—) F2Fs r—— EXT4 woommsa BTRFS =770 NILFS2 7 7
| o 1'-':"‘-‘1'.
§ 2.3 I 108 "'Ii_" 1—,0- 'I‘, E 2 |- 1es -
o o Fe-512KB req: 0/9% = 1
g 2 ! [E%E,| Discard size < 256KB: 60% E ' 1T p| I r Indexing overhea
r o 1 " T} .
= 0288 - - € 151 | N 1 for large file
8 15 - wisRe LT } ,/ ; : —: E videgiervar I / T
E . ? Periodic dalta flushg L 1
= | -‘H M 8 q & | 7]
2 3 I . gt oL ® ﬂ 5
£ 1 N ZNg £ ¢
o ‘N SN AN N
D | . //‘ | / t"“:""‘ - U \\'\/Jl ._-.
videoserver fileserver varmail VidBosarver flleservar varmail
filebench workloads filebench workloads
[SATA 55D] [PCle SSD]

- 15/19 -

Multi-head Logging

® Using more logs gives better hot and cold data separation.
« 2logs: node, data

Test condition:

Run two workloads simultaneously:

1. Varmail (10,000 files in 100 dirs, total writes 6.5 GB)
2. Copy jpg files (500KB, 5,000 files, 2.5GB) =» considered as cold

of segments (%)

i Huot Direct node blocks for directories
* 4]ogs: hot node, warm/cold node, Node [“Warm | Direct node blocks for regular files
Cold | Indirect node blocks
hot data, warm/cold data o T Himreyenihiois
Warm | Data blocks made by users
Data Data blocks moved by cleaning:
Cold | Cold data blocks specified by users;
Multimedia file data
| T T
2 Logs E
— | 4 Logs -
6 Logs
RN 128 2“] 2

100
80
60
40
20

0

Type | Temp. | Objects

of valid blocks
-16/19 -

Cleaning Cost Analysis

Under high utilization, F2FS uses adaptive logging to restrain FS

cleaning cost.

* Only node segment cleaning is done.

» Evenin 97.5% util., WAF is less than 1.025.

Without adaptive logging, WAF' goes up to more than 3.
Test condition:

120GB of 250GB (SATA 55D)

Util (Cold - Hot) = 80%(60:20), 90%(60-30), 95%(60: 35), 97 5%(60:37 5)

Workload : 20GB 4KB random writes, 10 iterations

—— 0% —O—90% --k--95% @ —#--97.5%

1.030

0.985

-17/19 -

1. WAF: Write Amplification Factor

—a— 80 =030k ==dr=95% === 7. 5%

1.025 -
1.020 -
1.015 -

w 1010 -

S 1.005 -
1.000 -
0.995 -
0.990 -

Adaptive Logging Performance

m Adaptive logging gives graceful performance degradation under
highly aged volume conditions.
* Fileservertest on SATA SSD (94% util.)

— Sustained performance improvement: 2x/3x over ext4/btrfs.
* |ozone teston eMMC (100% util.) Threaded logging writes data
into invalid blocks in segment.
— Sustained performance is similar to ext4.

| | |
+++I

segment

——F2 FS_ada ptl"u'E ——F2 FS_rmrmaI -0 EXT4 -~ BTRFS ——F2 FS_E da ptl"u"E —{O—F2 Fs_nnrmal - EXT4
Fileserver test on SATA 55D, 16

1 94% utilization 1.4 A lozone test on eMMC,
i ® ®
_G O

1.2 - 100% utilization
1.0 4
1 (clean) 2 (dirty) 3 (dirty) 4 (dirty)
Runs Runs

0.8 A
- 18/19 -

0.6 A
04 A
0.2 A
0.0

Normalized Performance
o O = = NN
o Wn o Wn o W

1
E
M
i
I
r
]
Normalized Performance

Conclusion

m F2FS features
« Flash friendly on-disk layout -> align FS GC unit with FTL GC unit,
« Costeffective index structure -> restrain write propagation,
« Multi-head logging -> cleaning cost reduction,
« Adaptive logging -> graceful performance degradation in aged condition,
« Roll-forward recovery -> fsync acceleration.

m F2FS shows performance gain over other Linux file systems.

« 3.1x (lozone) and 2x (SQLite) speedup over Ext4,

o 2.9X (SATASSD)and 1.8x (PCle SSD) speedup over Ext4 (varmail)
m F2FS is publicly available, included in Linux mainline kernel since

Linux 3.8.

- 19/19 -

Thank You!

	Slide1
	Slide2
	Slide3
	Slide4
	Slide5
	Slide6
	Slide7
	Slide8
	Slide9
	Slide10
	Slide11
	Slide12
	Slide13
	Slide14
	Slide15
	Slide16
	Slide17
	Slide18
	Slide19
	Slide20

