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Datacenter Storage 

• Multi-tier distributed systems on clusters of commodity servers 
and disk drives 

 client-side frontend 
 caching layer 
 backend storage 
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Datacenter Storage 

• Multi-tier distributed systems on clusters of commodity servers 
and disk drives 

 client-side frontend 
 caching layer 
 backend storage 

 
• Frontend tier: client-side 

 stateless for reduced cross-layer communication 
 recent updates kept in volatile memory 
 lost data in case of client failure/reboot 
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Representative System 

• Ceph object-based scale-out file system 
 client-side memory-based caching 

 

• Experiment 
 Filebench fileserver 
 writeback every 5 sec dirty data older than 30 sec (default) 

 

• Outcome 
 on average, 24.3MB of dirty data only in volatile memory over time  
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• File-based 
 file sharing  
 improved performance 
 semantics awareness 
× compatibility limitations 

 

• Object-based 
 scalability 

• Block-based 
 virtualization flexibility 
× no sharing 
× translation overhead 
× semantic gap 

 

Storage Interfaces 
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The Problem of Block-based Caching 

• Strengths 
Performance  

• improved throughput 
• reduced latency 

Efficiency  
• reduced server & network load 

 

 
 
 
 
 
 
 
 

• Weaknesses 
Functionality  

• no file sharing 
Overhead  

• translation overhead 
• metadata persistence 

Consistency  
• semantic gap 
• ordering of requests 
• grouping of operations 
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Key Insight 

 
• Improve  

 the durability of the memory-based cache at the client of shared storage 
systems 

 
• Gain 

 performance  
 efficiency 
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Design Goals 

• Interface  
• POSIX-like file-based interface 

 

• Sharing  
• native file-sharing support within and across hosts 

 

• Durability  
• recent updates survive client reboots 

 

• Performance  
• sequential disk throughput for writes 

 

• Scalability  
• scale-out backend servers 
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The Arion System Architecture 

Distributed filesystem 
 object-based 
 multiple data & metadata servers 
 virtualized or bare-metal client 
 multiple backend replicas 

 

• Local journal at the client-side 
 heterogeneous replication 
 reliable directly attached storage 
 log both data and corresponding 

metadata 
 one journal per client 
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Journaling and Writeback 

• Local journal device attached to client at mount-time 
 

• Commit 
 synchronously transfer data updates from memory to journal 
 periodically or explicit flush request 

 

• Writeback 
 occasionally copy data blocks from memory to filesystem servers 
 periodically, under memory or journal space pressure 

 

• Written-back and invalidated pages removed from journal 
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Consistency 

• Shared file access with tokens 
 

• Normal operation - conflicting writes from different clients 
 checkpoint pending writes 
 invalidate related journal entries 
 revoke write token 

 

• Failure - client reconnection or reboot after a crash 
 acquire required tokens 
 replay file updates only if journaled metadata is newer than metadata 

fetched from the server 
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Implementation 

• Prototype implementation 
 CephFS kernel-level client (Linux kernel v3.6.6) 
 Linux JBD2 

 

• During commit 
 include metadata attributes in the journal tags of the descriptor block 

 

• During recovery  
 compare journaled metadata attributes with those newly fetched from MDS 
 replay writes only for files not accessed after the transaction commit 
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Experiments 

• Experimentation Environment: 
 Backend Servers - Ceph v0.80.1 (3 OSDs, 1 MON, 1 MDS) 

• 3GB RAM, 2 x 300GB 15KRPM SAS disks, 2 x quad-core x86-64 2.66GHz 
• separate OSD journal device 
• replication factor 3 

 

 Virtualized client 
• 2GB RAM, 2 x VCPUs 
• journal size 2GB, commit interval 1s  

 

 Host - XEN v4.2.0 
• 2 x 300GB 15KRPM SAS disks (RAID0), 2 x quad-core x86-64 2.66GHz 

 

• Workloads 
 Filebench fileserver & mail server 
 Flexible I/O Tester  
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Filebench Fileserver 

• Arion flushes dirty data to local journal every second 
 

• Reduced amount of vulnerable data in memory 
 from 24.3MB to 5.4MB over time 
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Filebench Mail Server 
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• Varying writeback and expiration intervals 
 

• Arion achieves up to 58% higher operation throughput than Ceph 
 

• OSD network traffic normalized by the number of completed operations 
• 30% reduction of the received network load 
• 27% reduction of the transmitted network load 
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Flexible IO Tester 

• Arion-60 achieves 22% reduced write latency  
 

• Received OSD network traffic reduced by 42% 
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Flexible IO Tester 

• Reduced disk utilization at the servers 
• filesystem device utilization reduced by 82% 
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Conclusions & Future Work 

• Durable shared storage through host-side journal integration at 
the client of a distributed filesystem 
 

• Tunable control over 
 amount of dirty pages staged at the host 
 time period for dirty pages to reach the backend servers 

 

• Benefits 
 improved durability of frontend memory caching 
 increased performance 
 resource efficiency (network & disk) 

 

• Future work 
 further experimentation 
 extend host-based journaling to support disk-based caching  
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