
Host-side Filesystem Journaling for
Durable Shared Storage

Andromachi Hatzieleftheriou, Stergios V. Anastasiadis
Department of Computer Science & Engineering

University of Ioannina, Greece

1 A. Hatzieleftheriou

Outline

Motivation

Design

Implementation

Evaluation

Conclusions

2 A. Hatzieleftheriou

Datacenter Storage

• Multi-tier distributed systems on clusters of commodity servers
and disk drives

 client-side frontend
 caching layer
 backend storage

A. Hatzieleftheriou 3

Apps
Client

Backend Servers

Network

Apps
Client

Apps
Client

Caching Layer

Datacenter Storage

• Multi-tier distributed systems on clusters of commodity servers
and disk drives

 client-side frontend
 caching layer
 backend storage

A. Hatzieleftheriou 4

Apps
Client

Backend Servers

Network

Apps
Client

Apps
Client

Frontend
(virtualized or bare-metal)

Caching Layer

Datacenter Storage

• Multi-tier distributed systems on clusters of commodity servers
and disk drives

 client-side frontend
 caching layer
 backend storage

• Frontend tier: client-side

 stateless for reduced cross-layer communication
 recent updates kept in volatile memory
 lost data in case of client failure/reboot

A. Hatzieleftheriou 5

Apps
Client

Backend Servers

Network

Apps
Client

Apps
Client

Frontend
(virtualized or bare-metal)

Caching Layer

Representative System

• Ceph object-based scale-out file system
 client-side memory-based caching

• Experiment
 Filebench fileserver
 writeback every 5 sec dirty data older than 30 sec (default)

• Outcome
 on average, 24.3MB of dirty data only in volatile memory over time

A. Hatzieleftheriou 6

0

50

0 30 60 90 120
Am

ou
nt

 (M
B)

Time (s)

Unflushed Dirty Data

Ceph

• File-based
 file sharing
 improved performance
 semantics awareness
× compatibility limitations

• Object-based
 scalability

• Block-based
 virtualization flexibility
× no sharing
× translation overhead
× semantic gap

Storage Interfaces

A. Hatzieleftheriou 7

VM

file/object

VM

Storage Servers

Host

VM
file

 file/object

VM

Host

Storage Servers

Host

VM
block

block/file

VM VM

block

VM

Host

The Problem of Block-based Caching

• Strengths
Performance

• improved throughput
• reduced latency

Efficiency
• reduced server & network load

• Weaknesses
Functionality

• no file sharing
Overhead

• translation overhead
• metadata persistence

Consistency
• semantic gap
• ordering of requests
• grouping of operations

A. Hatzieleftheriou 8

Key Insight

• Improve

 the durability of the memory-based cache at the client of shared storage
systems

• Gain

 performance
 efficiency

A. Hatzieleftheriou 9

Design Goals

• Interface
• POSIX-like file-based interface

• Sharing
• native file-sharing support within and across hosts

• Durability
• recent updates survive client reboots

• Performance
• sequential disk throughput for writes

• Scalability
• scale-out backend servers

A. Hatzieleftheriou 10

The Arion System Architecture

Distributed filesystem
 object-based
 multiple data & metadata servers
 virtualized or bare-metal client
 multiple backend replicas

• Local journal at the client-side
 heterogeneous replication
 reliable directly attached storage
 log both data and corresponding

metadata
 one journal per client

11 A. Hatzieleftheriou

Guest Guest

Hypervisor

HOST

Guest Guest

Object Storage Servers journal device

Journaling and Writeback

• Local journal device attached to client at mount-time

• Commit
 synchronously transfer data updates from memory to journal
 periodically or explicit flush request

• Writeback
 occasionally copy data blocks from memory to filesystem servers
 periodically, under memory or journal space pressure

• Written-back and invalidated pages removed from journal
A. Hatzieleftheriou 12

Client RAM

HOST Journal

Object Storage Servers

1. write 3. writeback

2. commit

Consistency

• Shared file access with tokens

• Normal operation - conflicting writes from different clients
 checkpoint pending writes
 invalidate related journal entries
 revoke write token

• Failure - client reconnection or reboot after a crash
 acquire required tokens
 replay file updates only if journaled metadata is newer than metadata

fetched from the server

A. Hatzieleftheriou 13

Implementation

• Prototype implementation
 CephFS kernel-level client (Linux kernel v3.6.6)
 Linux JBD2

• During commit
 include metadata attributes in the journal tags of the descriptor block

• During recovery
 compare journaled metadata attributes with those newly fetched from MDS
 replay writes only for files not accessed after the transaction commit

A. Hatzieleftheriou 14

D D D C tag1

tag2

header

Descriptor
block

Data blocks Commit
block

inode info
block count
start offset
end offset
checksum
flags

CLIENT

Experiments

• Experimentation Environment:
 Backend Servers - Ceph v0.80.1 (3 OSDs, 1 MON, 1 MDS)

• 3GB RAM, 2 x 300GB 15KRPM SAS disks, 2 x quad-core x86-64 2.66GHz
• separate OSD journal device
• replication factor 3

 Virtualized client
• 2GB RAM, 2 x VCPUs
• journal size 2GB, commit interval 1s

 Host - XEN v4.2.0
• 2 x 300GB 15KRPM SAS disks (RAID0), 2 x quad-core x86-64 2.66GHz

• Workloads
 Filebench fileserver & mail server
 Flexible I/O Tester

15 A. Hatzieleftheriou

Filebench Fileserver

• Arion flushes dirty data to local journal every second

• Reduced amount of vulnerable data in memory
 from 24.3MB to 5.4MB over time

A. Hatzieleftheriou 16

0

20

40

60

80

0 30 60 90 120

Am
ou

nt
 (M

B)

Time (s)

Unflushed Dirty Data

Ceph

Arion

Filebench Mail Server

A. Hatzieleftheriou 17

• Varying writeback and expiration intervals

• Arion achieves up to 58% higher operation throughput than Ceph

• OSD network traffic normalized by the number of completed operations
• 30% reduction of the received network load
• 27% reduction of the transmitted network load

531.30 531.00
596.40

837.80 823.10

0
100
200
300
400
500
600
700
800
900

Ceph Ceph-1 Ceph-sync Arion-60 Arion-inf

Th
ro

ug
hp

ut
 (O

ps
/s

)

Mail Server

0

1

2

3

4

5

6

 Ceph Ceph-1 Ceph-sync Arion-60 Arion-inf

N
or

m
al

iz
ed

 N
et

w
. L

oa
d

(K
B/

IO
)

Mail Server (OSD)

Received

Transmitted

Flexible IO Tester

• Arion-60 achieves 22% reduced write latency

• Received OSD network traffic reduced by 42%

A. Hatzieleftheriou 18

0

500

1,000

1,500

2,000

2,500

0 60 120 180 240 300

Cu
m

ul
at

iv
e

Re
ce

iv
ed

 D
at

a
(M

B)

Time (s)

Network Load (OSD)

Ceph

Ceph-1

Arion-60

Arion-inf

Ceph-sync

0.9

1.5

3.2

0.7
0.9

0

0.5

1

1.5

2

2.5

3

3.5

 Ceph Ceph-1 Ceph-sync Arion-60 Arion-inf

Av
er

ag
e

La
te

nc
y

(m
s)

Random Writes (Zipfian)

Flexible IO Tester

• Reduced disk utilization at the servers
• filesystem device utilization reduced by 82%

A. Hatzieleftheriou 19

0

20

40

60

80

100

0 15 30 45 60 75 90

Jo
ur

na
l D

ev
ic

e
(%

)

Time (s)

Disk Utilization (OSD)

Ceph-1

Arion-60

0

20

40

60

80

100

0 15 30 45 60 75 90

Fi
le

sy
st

em
 D

ev
ic

e
(%

)

Time (s)

Disk Utilization (OSD)

Conclusions & Future Work

• Durable shared storage through host-side journal integration at
the client of a distributed filesystem

• Tunable control over
 amount of dirty pages staged at the host
 time period for dirty pages to reach the backend servers

• Benefits
 improved durability of frontend memory caching
 increased performance
 resource efficiency (network & disk)

• Future work
 further experimentation
 extend host-based journaling to support disk-based caching

A. Hatzieleftheriou 20

	Host-side Filesystem Journaling for Durable Shared Storage
	Outline
	Datacenter Storage
	Datacenter Storage
	Datacenter Storage
	Representative System
	Storage Interfaces
	The Problem of Block-based Caching
	Key Insight
	Design Goals
	The Arion System Architecture
	Journaling and Writeback
	Consistency
	Implementation
	Experiments
	Filebench Fileserver
	Filebench Mail Server
	Flexible IO Tester
	Flexible IO Tester
	Conclusions & Future Work

