Host-side Filesystem Journaling for
Durable Shared Storage

Andromachi Hatzieleftheriou, Stergios V. Anastasiadis

Department of Computer Science & Engineering
University of loannina, Greece

Outline

Motivation
Design
Implementation
Evaluation

Conclusions

A. Hatzieleftheriou

Datacenter Storage

Multi-tier distributed systems on clusters of commodity servers
and disk drives
e client-side frontend

 caching layer s BN Ao B Ao

e backend storage

Network

/ Caching Layer

Backend Servers

A. Hatzieleftheriou

Datacenter Storage

Multi-tier distributed systems on clusters of commodity servers
and disk drives
Frontend
e client-side frontend (virtualized or bare-metal)

e

e caching layer

e backend storage

Network

Caching Layer

Backend Servers

Datacenter Storage

Multi-tier distributed systems on clusters of commodity servers
and disk drives
Frontend
e client-side frontend (virtualized or bare-metal)

g

e caching layer

e backend storage

Network

Frontend tier: client-side

o stateless for reduced cross-layer communication

Caching Layer

_ _ Backend Servers
e recent updates kept in volatile memory

o lost data in case of client failure/reboot --'--
-.

Representative System

Unflushed Dirty Data

——Ceph

Ul
o
1

Amount (MB)

o

o

30 60 90 120
Time (s)

Ceph object-based scale-out file system

e client-side memory-based caching
Experiment

o Filebench fileserver

o writeback every 5 sec dirty data older than 30 sec (default)
Outcome

e on average, 24.3MB of dirty data only in volatile memory over time

Storage Interfaces

rii ?9

Host Host

block/file \ / block

Storage Servers

Block-based
v virtualization flexibility
x no sharing
x translation overhead
x semantic gap

e

Host Host
f|Ie/obJect;I / ; file/object

Storage Servers

File-based

v file sharing

v improved performance
v semantics awareness

x compatibility limitations

Object-based

v scalability

The Problem of Block-based Caching

Weaknesses
Performance Functionality
improved throughput « no file sharing
reduced latency Overhead
Efficiency « translation overhead
reduced server & network load « metadata persistence

Consistency
semantic gap
ordering of requests
« grouping of operations

Key Insight

Improve

e the durability of the memory-based cache at the client of shared storage
systems

Gain
e performance
o efficiency

Design Goals

Interface
« POSIX-like file-based interface

Sharing

- native file-sharing support within and across hosts

Durability
« recent updates survive client reboots

Performance
- sequential disk throughput for writes

Scalability

« scale-out backend servers

The Arion System Architecture

HOST

-
>

!/
K f--T)
Hypervisor

@&

, _ Object Storage Servers
journal device

Distributed filesystem Local journal at the client-side
e object-based e heterogeneous replication

« multiple data & metadata servers » reliable directly attached storage

log both data and corresponding
metadata

e virtualized or bare-metal client

e multiple backend replicas
e one journal per client

Journaling and Writeback

1. write 3. writeback
A | L
2. commit Object Storage Servers
-
HOST Journal

Local journal device attached to client at mount-time

Commit
e synchronously transfer data updates from memory to journal

o periodically or explicit flush request

Writeback
e occasionally copy data blocks from memory to filesystem servers

e periodically, under memory or journal space pressure

Written-back and invalidated pages removed from journal

Consistency

Shared file access with tokens

Normal operation - conflicting writes from different clients
e checkpoint pending writes
e invalidate related journal entries
e revoke write token

Failure - client reconnection or reboot after a crash
e acquire required tokens

o replay file updates only if journaled metadata is newer than metadata
fetched from the server

Implementation

CLIENT Descriptor Data blocks Commit
block block
inode info
block count header
start offset
end offset tag,
checksum '
flags

Prototype implementation
e CephFS kernel-level client (Linux kernel v3.6.6)

e LinuxJBD2

During commit
e include metadata attributes in the journal tags of the descriptor block

During recovery
e compare journaled metadata attributes with those newly fetched from MDS

e replay writes only for files not accessed after the transaction commit

Experiments

Experimentation Environment:

e Backend Servers - Ceph v0.80.1 (3 OSDs, 1 MON, 1 MDS)
« 3GB RAM, 2 x 300GB 15KRPM SAS disks, 2 x quad-core x86-64 2.66GHz
« separate OSD journal device
 replication factor 3

e Virtualized client
« 2GB RAM, 2 x VCPUs
« journal size 2GB, commit interval 1s

e Host-XENv4.2.0
« 2 x300GB 15KRPM SAS disks (RAIDO), 2 x quad-core x86-64 2.66GHz

Workloads
e Filebench fileserver & mail server
o Flexible I/O Tester

Filebench Fileserver

Unflushed Dirty Data

0]
o
1

——Ceph

[e2)]
o
1

Arion

0 30 60 90 12

Amount (MB)
D
o

N
o

0 -

0
Time (s)

Arion flushes dirty data to local journal every second

Reduced amount of vulnerable data in memory
e from 24.3MB to 5.4MB over time

Filebench Mail Server

Mail Server Mail Server (OSD)
900 837.80 823.10 § 6
800 o M Received
—_ ¥ 5
<L 700 g = Transmitted
a2 596.40 o
O 600 | 53130 531.00 94
+ 500 >
g‘ 400 % 3
-go 300 5 2
o g
£ 200 =
- © 1
100 g
0 S0
Ceph Ceph-1 Ceph-sync Arion-60 Arion-inf Ceph Ceph-1 Ceph-sync Arion-60 Arion-inf

Varying writeback and expiration intervals
Arion achieves up to 58% higher operation throughput than Ceph

OSD network traffic normalized by the number of completed operations
« 30% reduction of the received network load
« 27% reduction of the transmitted network load

A. Hatzieleftheriou 17

Flexible |0 Tester

Random Writes (Zipfian) Network Load (OSD)
)
3.5 - 2,500 -
3.2 E Ceph
z 3 1 £ 2,000 - Ceph-1
~— 25 | a Arion-60
> D 1,500 -
b g~ Arion-inf
o 2 - =
= 15] Ceph-sync
© . 1,000 - -
= 15 - & _—
o 0.9 0.9 > 500 -
s 11 0.7 =
> —
< 05 7] g 0 I T T T I E— |
5 0 60 120 180 240 300
o T T T U

Ceph Ceph-1 Ceph-sync Arion-60 Arion-inf

Arion-60 achieves 22% reduced write latency

Received OSD network traffic reduced by 42%

A. Hatzieleftheriou 18

Flexible |0 Tester

Disk Utilization (OSD)

100 100 -
3 %0 ——Ceph-1 X
8 Arion-60 .g
'S 60 >
1) Q
a (o]
— 40 =
-]
E %
3 g
o b - -~ - 11 I = 0
L

Reduced disk utilization at the servers

80 -
60 -
40 -
20 -

Disk Utilization (OSD)

!

. filesystem device utilization reduced by 82%

’

15

i

\

h
%

T T -1 1
30 45 60 75
Time (s)

1N

90

Conclusions & Future Work

Durable shared storage through host-side journal integration at
the client of a distributed filesystem

Tunable control over

e amount of dirty pages staged at the host
e time period for dirty pages to reach the backend servers

Benefits
e improved durability of frontend memory caching
e increased performance
o resource efficiency (network & disk)

Future work

o further experimentation
o extend host-based journaling to support disk-based caching

	Host-side Filesystem Journaling for Durable Shared Storage
	Outline
	Datacenter Storage
	Datacenter Storage
	Datacenter Storage
	Representative System
	Storage Interfaces
	The Problem of Block-based Caching
	Key Insight
	Design Goals
	The Arion System Architecture
	Journaling and Writeback
	Consistency
	Implementation
	Experiments
	Filebench Fileserver
	Filebench Mail Server
	Flexible IO Tester
	Flexible IO Tester
	Conclusions & Future Work

