Design Tradeoffs for Data Deduplication Performance in Backup Workloads

Min Fu[†], Dan Feng[†], Yu Hua[†], Xubin He[‡], Zuoning Chen^{*}, Wen Xia[†], Yucheng Zhang[†], Yujuan Tan[§]

[†]Huazhong University of Science and Technology [‡]Virginia Commonwealth University ^{*}National Engineering Research Center for Parallel Computer [§]Chongqing University

Background

- In big data era,
 - we had 4.4 ZB of data in 2013, and expectedly to grow by 10-fold in 2020 [IDC'2014];
 - data redundancy widely exists in real-world applications.
- Data deduplication is a scalable compression technology
 - non-overlapping chunking
 - no byte-by-byte comparison (fingerprinting)
- A significantly lower computation overhead than traditional compression technologies
 - faster due to coarse-grained compression
 - higher compression ratio since it looks for duplicate chunks in a larger scope. (The entire system VS. a limited compression window)

An Overview of a Typical Deduplication System

(日) (同) (三) (三)

Motivations

- Challenges to design an efficient deduplication system
 - Chunking
 - Indexing
 - Defragmenting
 - Restoring
 - Garbage collecting
 - ► ..
- We have a huge number of papers, solutions, and design choices
 - Which one is better?
 - Better in what?
 - backup performance, restore performance, deduplication ratio, or memory footprint?
 - How about their interplays?

Min Fu † , Dan Feng † , Yu Hua † , Xubin He † , Design Tradeoffs for Data Deduplication Perf

The Parameter Space

- In this paper, we mainly explore
 - fingerprint indexing,
 - rewriting algorithm (in-line defragmenting),
 - restore algorithm (cache replacement),
 - and their interplays.

Parameter Space		Descriptions		
Indexing	Key-value mapping	Mapping fingerprints to their prefetching units		
	Fingerprint cache	In-memory fingerprint cache		
	Sampling	Selecting representative fingerprints		
	Segmenting Splitting the unit of logical locality			
	Segment selection	Selecting segments to be prefetched		
	Segment prefetching	Exploiting segment-level locality		
Defragmenting (rewriting)		Reducing fragmentation		
Restoring		Designing restore cache/algorithm		

Table: The major parameters we discuss.

Indexing Bottleneck

- A deduplication system requires a huge key-value store to identify duplicates
- An in-memory key-value store is not cost-efficient:
 - Amazon.com: a 1 TB HDD costs \$60, and an 8 GB DRAM costs \$80
 - suppose 4KB-sized chunks and 32-byte-sized key-value pair
 - ▶ indexing 1 TB unique date requires an 8 GB-sized key-value store
- An HDD-based key-value store easily becomes the performance bottleneck, compared to the fast CDC chunking (400 MB/s and 102,400 chunks per sec under commercial CPUs)
- Modern fingerprint indexes exploit workload characteristics (*locality*) of backup systems to prefetch and cache fingerprints
- Hence, a fingerprint index consists of two major components:
 - key-value store
 - fingerprint prefetching/caching module

The Fingerprint Index Taxonomy

Figure: Categories of existing work.

- Classification according to the use of key-value store
 - Exact Deduplication (ED): fully indexing stored fingerprints
 - Near-exact Deduplication (ND): partially indexing stored fingerprints
- Classification according to the prefetching policy
 - Logical Locality (LL): the chunk sequence before deduplication
 - Physical Locality (PL): the physical layout of stored chunks

Exact vs. Near-exact Deduplication

- Exact Deduplication (ED) indexes all stored fingerprints
 - a huge key-value store on disks
 - fingerprint prefetching/caching to improve backup throughput
- Near-exact Deduplication (ND) indexes only sampled (representative) fingerprints
 - a small key-value store in DRAM
 - fingerprint prefetching/caching to improve deduplication ratio
- ND trades deduplication ratio for higher backup/restore performance and lower memory footprint
 - Does a lower memory footprint indicate a lower financial cost?
 - To avoid an increase of the storage cost, ND needs to achieve 97% of the deduplication ratio of ED.

Exploiting Physical Locality

- The key-value store maps a fingerprint to its physical location, i.e., a container.
- Weakness: the prefetching efficiency decreases over time due to the fragmentation problem.
 - Older containers have many useless fingerprints for new backups.
- For Near-exact Deduplication, how to select (sample) representative fingerprints in each container?
 - Selects the fingerprints that mod R = 0 in a container, or
 - ► Selects the first fingerprint every *R* fingerprints in a container.

→ ∃ →

Exploiting Logical Locality

- The key-value store maps a fingerprint to its logical location, i.e., a segment in a recipe.
- The segment serves as the prefetching unit
- Advantage: no fragmentation problem
- Weakness: extremely high update overhead to the key-value store
 - Even duplicate fingerprints have new logical locations (in new recipes and new segments).
 - Optimization: only update sampled duplicate fingerprints.
- How to segmenting and sampling?

Design Choices for Exploiting Logical Locality

	BLC Extreme Binning		Sparse Indexing	SiLo
Exact deduplication	Yes	No	No	No
Segmenting method	FSS	FDS	CDS	FSS & FDS
Sampling method	N/A	Minimum	Random	Minimum
Segment selection	Base	Top- <i>all</i>	Top- <i>k</i>	Top-1
Segment prefetching	Yes	No	No	Yes
Key-value mapping relationship	1:1	1:1	Varied	1:1

Table: Existing work exploiting logical locality.

- Segmenting: Fixed-Sized Segmenting (FSS), File-Defined Segmenting (FDS), and Content-Defined Segmenting (CDS)
- Sampling: Uniform, Random, and Minimum.
- Segment selection: *Base*, *Top-k*, and *Mix*.
- Segment prefetching: exploiting segment-level locality.
- Key-value mapping: each representative fingerprint can refer to a varied number of logical locations.

Defragmenting and Rewriting Algorithm

- The rewriting algorithm is an emerging dimension to reduce fragmentation.
- What is the fragmentation?
 - ► The deviation between the logical locality and physical locality.
- The fragmentation hurts the restore (read) performance, and the backup performance of the fingerprint index exploiting physical locality.

Existing Rewriting Algorithms

- Buffer-based algorithm
 - CFL-based Selective Deduplication [Nam'2012]
 - Context-Based Rewriting [Kaczmarczyk'2012]
 - Capping [Lillibridge'2013]
- History-aware algorithm
 - History-Aware Rewriting [Fu'2014]
- How about their interplays with the state-of-the-art fingerprint indexes?
 - How does the rewriting algorithm improve the fingerprint index exploiting physical locality?
 - How do the different prefetching schemes affect the efficiency of the rewriting algorithm?

The Restore Algorithm

- While the rewriting algorithm determines the chunk layout, the restore algorithm improves restore performance under limited memory.
 - How to write, and then how to read.
- Existing restore algorithms:
 - traditional LRU cache
 - Belady's optimal replacement cache
 - rolling forward assembly area [Lillibridge'2013]
- How about their interplays with the rewriting algorithm?

The DeFrame Architecture

- Fingerprint index: duplicate identification
 - key-value store
 - fingerprint prefetching/caching
- Container store: container management (physical locality)
- Recipe store: recipe management (logical locality)

The Backup Pipeline

- Dedup phase identifies duplicate/unique chunks
- Rewrite phase identifies fragmented duplicate chunks
- Filter phase determines whether write a chunk
- Advantage: we can implement a new rewriting algorithm without the need to modify the fingerprint index, and vice versa.

The Restore Pipeline

- Read recipe phase reads the recipe and output fingerprints
- *Restore algorithm phase* receives fingerprints and fetch chunks from the container store
- Reconstruct file phase receives the chunks and reconstruct files

Garbage Collection

- Users can set a retention time for the backups.
- All expired backups will be deleted automatically by DeFrame.
- How to reclaim the invalid chunks becomes a major challenge.
 - We develop History-Aware Rewriting algorithm to aggregate valid chunks into fewer containers
 - We develop Container-Marker Algorithm to reclaim invalid containers.
- More details can be found in our ATC'14 paper.

Experimental Setups

Dataset name	Kernel	VMDK	RDB	
Total size	104 GB	1.89 TB	1.12 TB	
# of versions	258	127	212	
Deduplication ratio	45.28	27.36	39.1	
Avg. chunk size	5.29 KB	5.25 KB	4.5 KB	
Self-reference	< 1%	15-20%	0	
Fragmentation	Severe	Moderate	Severe	

Table: The characteristics of our datasets.

- Kernel: downloaded from kernel.org
- VMDK: 127 consecutive snapshots of a virtual machine disk image
- RDB: 212 consecutive snapshots of a Redis database

Metrics and Our Goal

Quantitative Metrics

- *Deduplication ratio*: the original backup data size divided by the size of stored data.
- Memory footprint: the runtime DRAM consumption.
- *Storage cost*: the total cost of HDDs and DRAM for stored chunks and the fingerprint index.
- Lookup/update request per GB: the number of lookup/update requests to the key-value store to deduplicate 1 GB of data.
- *Restore speed*: 1 divided by mean containers read per MB of restored data.
- It is practically impossible to find a solution that performs the best in all metrics.
- We aim to find a solution with the following properties:
 - sustained, high backup performance as the top priority.
 - reasonable tradeoffs in the remaining metrics.

EDPL vs. EDLL

Figure: Comparisons between EDPL and EDLL in terms of lookup and update overheads. R = 256 indicates a sampling ratio of 256:1. Results come from RDB.

- EDPL suffers from the ever-increasing lookup overhead.
- For EDLL, the sampling optimization is efficient.

NDPL vs. NDLL

Figure: Comparing NDPL and NDLL under different cache sizes. The Y-axis shows the relative deduplication ratio to exact deduplication.

• NDLL performs better in Kernel and RDB, but worse in VMDK than NDPL.

23 / 32

The Interplays Between Fingerprint Index and Rewriting Algorithm

Figure: (a) How does HAR improve EDPL in terms of lookup overhead in Kernel? (b) How does fingerprint index affect HAR? The Y-axis shows the relative deduplication ratio to that of exact deduplication without rewriting.

• Exact Deduplication exploiting Physical Locality (EDPL) has the best interplays with the rewriting algorithm (HAR).

The Interplays Between Rewriting and Restore Algorithm

Figure: EDPL is used as the fingerprint index

• When HAR is used, the optimal cache is better; otherwise, the rolling forward assembly area is better.

25 / 32

Conclusions

- We propose a taxonomy to understand the parameter space of data deduplication.
- We design and implement a framework to evaluate the parameter space.
- We present our experimental results, and draw the following recommendations.

Subspace	Recommended parameter settings	Advantages		
EDU	content-defined segmenting	lowest storage cost		
EDLL	random sampling	sustained backup performance		
NDPL	uniform compling	lowest memory footprint		
	unitorni samping	simplest logical frame		
NDU	content-defined segmenting	lowest memory footprint		
NDLL	similarity detection & segment prefetching	high deduplication ratio		
EDPL	an efficient rewriting algorithm	sustained high restore performance		
	an encienc rewriting algorithm	good interplays with the rewriting algorithm		

Table: How to choose a reasonable solution according to required tradeoff.

Thank You!

Q & A

DeFrame is released at www.github.com/fomy/destor

1in Fu¹, Dan Feng¹, Yu Hua¹, Xubin He[‡], Design Tradeoffs for Data Deduplication Perf

Feb. 19, 2015 27 / 32

Exploiting Similarity for NDLL

Figure: This figure shows the workflow of the Top-k similarity detection.

- **Observations**: NDLL works better than NDPL in datasets where self-references are rare, but worse in datasets where self-references are common.
 - Self-references are duplicates in a single file (backup).
- We could exploit similarity to improve deduplication ratio.
- Advantage: higher deduplication ratio than the Base procedure.
- Weakness: more complicated procedure and an additional buffer, compared to the *Base* procedure.

The efficiency of similarity detection

Figure: Impacts of the segment selection (s), segment prefetching (p), and mapping relationship (v) on deduplication ratio.

- On the X-axis, we have parameters in the format (s, p, v).
 - s could be Base and Top-k (k varies from 1 to 4).
 - p varies from 1 to 4.
 - v varies from 1 to 4.
- They finally achieve 90% of the deduplication ratio of exact deduplication.

Min Fu^{\dagger}, Dan Feng † , Yu Hua † , Xubin He ‡ , Design Tradeoffs for Data Deduplication Perfe

The efficiency of similarity detection

Figure: Impacts of the segment selection (s), segment prefetching (p), and mapping relationship (v) on segments read.

• The segment prefetching is complementary with Top-k.

Storage cost

Dataset	Fraction	EDPL/EDLL	NDPL-64	NDPL-128	NDPL-256	NDLL-64	NDLL-128	NDLL-256
Kernel	DRAM	1.33%	0.83%	0.49%	0.31%	0.66%	0.34%	0.16%
	HDD	57.34%	65.01%	70.56%	77.58%	59.03%	59.83%	60.23%
	Total	58.67%	65.84%	71.04%	77.89%	59.69%	60.17%	60.39%
RDB	DRAM	1.40%	0.83%	0.48%	0.31%	0.70%	0.35%	0.17%
	HDD	55.15%	61.25%	66.08%	73.58%	55.27%	55.34%	55.65%
	Total	56.55%	62.07%	66.56%	73.89%	55.97%	55.69%	55.82%
VMDK	DRAM	1.41%	0.82%	0.45%	0.27%	0.71%	0.35%	0.18%
	HDD	54.86%	60.32%	63.16%	67.10%	59.79%	62.92%	71.24%
	Total	56.27%	61.14%	63.61%	67.36%	60.49%	63.27%	71.42%

Table: The storage costs relative to the baseline which indexes all fingerprints in DRAM. NDPL-128 is NDPL of a 128:1 uniform sampling ratio.

- Via exploiting locality, the storage cost reduces by about 40%.
- Near-exact deduplication reduces the memory footprint, however it generally increases the total storage cost.

Choosing Sampling Method in NDPL

Figure: Impacts of varying sampling method on NDPL. Points in each line are of different sampling ratios, which are 256, 128, 64, 32, 16, and 1 from left to right.

• The uniform sampling achieves significantly better deduplication ratio than the random sampling.

Feb. 19, 2015

32 / 32