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Background

@ In big data era,
» we had 4.4 ZB of data in 2013, and expectedly to grow by 10-fold in
2020 [IDC'2014];
» data redundancy widely exists in real-world applications.

o Data deduplication is a scalable compression technology
» non-overlapping chunking
> no byte-by-byte comparison (fingerprinting)
@ A significantly lower computation overhead than traditional
compression technologies

» faster due to coarse-grained compression
» higher compression ratio since it looks for duplicate chunks in a larger
scope. (The entire system VS. a limited compression window)
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An Overview of a Typical Deduplication System
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Motivations

@ Challenges to design an efficient deduplication system
» Chunking
> Indexing
> Defragmenting
» Restoring

» Garbage collecting
>

@ We have a huge number of papers, solutions, and design choices

» Which one is better?
> Better in what?
* backup performance, restore performance,
deduplication ratio, or memory footprint?

1am growing

» How about their interplays?
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The Parameter Space

@ In this paper, we mainly explore
> fingerprint indexing,
» rewriting algorithm (in-line defragmenting),
» restore algorithm (cache replacement),
» and their interplays.

Parameter Space Descriptions
Key-value mapping Mapping fingerprints to their prefetching units
Fingerprint cache In-memory fingerprint cache

. Sampling Selecting representative fingerprints

Indexing > — - - -
Segmenting Splitting the unit of logical locality
Segment selection Selecting segments to be prefetched
Segment prefetching | Exploiting segment-level locality
Defragmenting (rewriting) Reducing fragmentation

Restoring Designing restore cache/algorithm

Table: The major parameters we discuss.
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Indexing Bottleneck

A deduplication system requires a huge key-value store to identify
duplicates
@ An in-memory key-value store is not cost-efficient:

» Amazon.com: a 1 TB HDD costs $60, and an 8 GB DRAM costs $80
> suppose 4KB-sized chunks and 32-byte-sized key-value pair
» indexing 1 TB unique date requires an 8 GB-sized key-value store

@ An HDD-based key-value store easily becomes the performance
bottleneck, compared to the fast CDC chunking (400 MB/s and
102,400 chunks per sec under commercial CPUs)

e Modern fingerprint indexes exploit workload characteristics (locality)
of backup systems to prefetch and cache fingerprints

@ Hence, a fingerprint index consists of two major components:

> key-value store
» fingerprint prefetching/caching module
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The Fingerprint Index Taxonomy

Figure: Categories of existing work.
@ Classification according to the use of key-value store
» Exact Deduplication (ED): fully indexing stored fingerprints
» Near-exact Deduplication (ND): partially indexing stored fingerprints
o Classification according to the prefetching policy
» Logical Locality (LL): the chunk sequence before deduplication
, Dan Feng', Yu Hua

» Physical Locality (PL): the physical layout of storgd chunks _
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Exact vs. Near-exact Deduplication

e Exact Deduplication (ED) indexes all stored fingerprints
> a huge key-value store on disks
» fingerprint prefetching/caching to improve backup throughput
@ Near-exact Deduplication (ND) indexes only sampled (representative)
fingerprints
» a small key-value store in DRAM
» fingerprint prefetching/caching to improve deduplication ratio
@ ND trades deduplication ratio for higher backup/restore performance
and lower memory footprint

» Does a lower memory footprint indicate a lower financial cost?
» To avoid an increase of the storage cost, ND needs to achieve 97% of

the deduplication ratio of ED.
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Exploiting Physical Locality
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@ The key-value store maps a fingerprint to its physical location, i.e., a

container.

@ Weakness: the prefetching efficiency decreases over time due to the

fragmentation problem.

» Older containers have many useless fingerprints for new backups.

@ For Near-exact Deduplication, how to select (sample) representative

fingerprints in each container?

» Selects the fingerprints that mod R = 0 in a container, or
» Selects the first fingerprint every R fingerprints in a container.
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Exploiting Logical Locality

An input
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hit
hit
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a recipe fingerprint

@ The key-value store maps a fingerprint to its logical location, i.e., a
segment In a recipe.

@ The segment serves as the prefetching unit

@ Advantage: no fragmentation problem

o Weakness: extremely high update overhead to the key-value store

» Even duplicate fingerprints have new logical locations (in new recipes
and new segments).
» Optimization: only update sampled duplicate fingerprints.

@ How to segmenting and sampling?
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Design Choices for Exploiting Logical Locality

BLC | Extreme Binning | Sparse Indexing SiLo
Exact deduplication Yes No No No
Segmenting method FSS FDS CDS FSS & FDS
Sampling method N/A Minimum Random Minimum
Segment selection Base Top-all Top-k Top-1
Segment prefetching Yes No No Yes
Key-value mapping relationship 1:1 1:1 Varied 1:1

Table: Existing work exploiting logical locality.

(FDS), and Content-Defined Segmenting (CDS)

Sampling: Uniform, Random, and Minimum.

Segment selection: Base, Top-k, and Mix.

varied number of logical locations.
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Segmenting: Fixed-Sized Segmenting (FSS), File-Defined Segmenting

Key-value mapping: each representative fingerprint can refer to a
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Defragmenting and Rewriting Algorithm
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A duplicate
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@ The rewriting algorithm is an emerging dimension to reduce

fragmentation.
@ What is the fragmentation?

» The deviation between the logical locality and physical locality.

@ The fragmentation hurts the restore (read) performance, and the
backup performance of the fingerprint index exploiting physical

locality.
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Existing Rewriting Algorithms

o Buffer-based algorithm
» CFL-based Selective Deduplication [Nam'2012]
» Context-Based Rewriting [Kaczmarczyk'2012]
» Capping [Lillibridge'2013]
@ History-aware algorithm
» History-Aware Rewriting [Fu'2014]
@ How about their interplays with the state-of-the-art fingerprint
indexes?
» How does the rewriting algorithm improve the fingerprint index
exploiting physical locality?
» How do the different prefetching schemes affect the efficiency of the
rewriting algorithm?
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The Restore Algorithm

An input .
. fingerprint Check the Liss Load the container
Read the recipe restore cache in the cache

hit

A restored chunk

@ While the rewriting algorithm determines the chunk layout, the restore
algorithm improves restore performance under limited memory.

» How to write, and then how to read.
o Existing restore algorithms:

» traditional LRU cache
» Belady's optimal replacement cache
» rolling forward assembly area [Lillibridge'2013]

@ How about their interplays with the rewriting algorithm?
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The DeFrame Architecture

Fingerprint Index
T
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Write full
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@ Fingerprint index: duplicate identification
> key-value store

» fingerprint prefetching/caching
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o Container store: container management (physical locality)
@ Recipe store: recipe management (logical locality)
=] 5
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The Backup Pipeline

Physical Locality

Logical Locality

———————————————————————— Write recipe Write full
containers

Fingerprint Index
e e e

Backup stream
D Lookup fingerprints Insert/Update

key-value pairs

@ Dedup phase identifies duplicate/unique chunks

@ Rewrite phase identifies fragmented duplicate chunks

o Filter phase determines whether write a chunk

@ Advantage: we can implement a new rewriting algorithm without the

need to modify the fingerprint index, and vice versa. .
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The Restore Pipeline

@ Read recipe phase reads the recipe and output fingerprints

@ Restore algorithm phase receives fingerprints and fetch chunks from
the container store

@ Reconstruct file phase receives the chunks and reconstruct files
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Garbage Collection

Users can set a retention time for the backups.

All expired backups will be deleted automatically by DeFrame.

How to reclaim the invalid chunks becomes a major challenge.
» We develop History-Aware Rewriting algorithm to aggregate valid
chunks into fewer containers
» We develop Container-Marker Algorithm to reclaim invalid containers.

More details can be found in our ATC'14 paper.
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Experimental Setups

Dataset name Kernel VMDK RDB
Total size 104 GB | 1.89TB | 1.12TB
# of versions 258 127 212
Deduplication ratio 45.28 27.36 39.1
Avg. chunk size 529 KB | 525 KB | 45 KB
Self-reference < 1% 15-20% 0
Fragmentation Severe | Moderate | Severe

Table: The characteristics of our datasets.

o Kernel: downloaded from kernel.org

o VMDK: 127 consecutive snapshots of a virtual machine disk image

@ RDB: 212 consecutive snapshots of a Redis database
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kernel.org

Metrics and Our Goal

Quantitative Metrics

Deduplication ratio: the original backup data size divided by the size
of stored data.

Memory footprint: the runtime DRAM consumption.

Storage cost: the total cost of HDDs and DRAM for stored chunks
and the fingerprint index.

Lookup/update request per GB: the number of lookup/update
requests to the key-value store to deduplicate 1 GB of data.

Restore speed: 1 divided by mean containers read per MB of restored
data.

It is practically impossible to find a solution that performs the best in
all metrics.
We aim to find a solution with the following properties:

» sustained, high backup performance as the top priority.

> reasonable tradeoffs in the remaining metrics.
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EDPL vs. EDLL
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Figure: Comparisons between EDPL and EDLL in terms of lookup and update
overheads. R = 256 indicates a sampling ratio of 256:1. Results come from RDB.

o EDPL suffers from the ever-increasing lookup overhead.

@ For EDLL, the sampling optimization is efficient.
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NDPL vs.

NDLL
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Figure: Comparing NDPL and NDLL under different cache sizes. The Y-axis
shows the relative deduplication ratio to exact deduplication.

@ NDLL performs better in Kernel and RDB, but worse in VMDK than

NDPL.
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The Interplays Between Fingerprint Index and Rewriting
Algorithm
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Figure: (a) How does HAR improve EDPL in terms of lookup overhead in
Kernel? (b) How does fingerprint index affect HAR? The Y-axis shows the
relative deduplication ratio to that of exact deduplication without rewriting.

e Exact Deduplication exploiting Physical Locality (EDPL) has the best
interplays with the rewriting algorithm (HAR).

, Dan Feng', Yu Hua', Xubin He™, Design Tradeoffs for Data Deduplication Perfi Feb. 19, 2015 24 / 32



The Interplays Between Rewriting and Restore Algorithm
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Figure: EDPL is used as the fingerprint index

@ When HAR is used, the optimal cache is better; otherwise, the rolling
forward assembly area is better.
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Conclusions

@ We propose a taxonomy to understand the parameter space of data
deduplication.

@ We design and implement a framework to evaluate the parameter

space.
@ We present our experimental results, and draw the following
recommendations.
[ Subspace | Rec ded parameter settings [ Advantages
EDLL content-defined segmenting lowest storage cost
random sampling sustained backup performance
NDPL uniform sampling IOV.VESt memory footprint
simplest logical frame
NDLL content-defined segmenting lowest memory footprint
similarity detection & segment prefetching high deduplication ratio
.. L . sustained high restore performance
EDPL an efficient rewriting algorithm good interplays with the rewriting algorithm

Table: How to choose a reasonable solution according to required tradeoff.
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Thank Youl

Q&A

DeFrame is released at www.github.com/fomy/destor
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Exploiting Similarity for NDLL

An input
sogment Sample ) Check key val'ue ) 'Load most Check duplicates
representative »| store, and find »| similar segments = ——>
X ) L X in the cache
fingerprints similar segments in the cache

Figure: This figure shows the workflow of the Top-k similarity detection.

@ Observations: NDLL works better than NDPL in datasets where
self-references are rare, but worse in datasets where self-references are
common.

> Self-references are duplicates in a single file (backup).
@ We could exploit similarity to improve deduplication ratio.
o Advantage: higher deduplication ratio than the Base procedure.

@ Weakness: more complicated procedure and an additional buffer,
compared to the Base procedure.
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The efficiency of similarity detection
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Figure: Impacts of the segment selection (s), segment prefetching (p), and
mapping relationship (v) on deduplication ratio.

@ On the X-axis, we have parameters in the format (s, p, v).
» s could be Base and Top-k (k varies from 1 to 4).
» p varies from 1 to 4.
» v varies from 1 to 4.

@ They finally achieve 90% of the deduplication ratio of exact

deduplication.
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The efficiency of similarity detection
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Figure: Impacts of the segment selection (s), segment prefetching (p)

(v) on segments read.

mapping relationship

@ The segment prefetching is complementary with Top-k.
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Storage cost

Dataset Fraction EDPL/EDLL NDPL-64 NDPL-128 NDPL-256 NDLL-64 NDLL-128 NDLL-256
DRAM 1.33% 0.83% 0.49% 0.31% 0.66% 0.34% 0.16%

Kernel HDD 57.34% 65.01% 70.56% 77.58% 59.03% 59.83% 60.23%
Total 58.67% 65.84% 71.04% 77.89% 59.69% 60.17% 60.39%

DRAM 1.40% 0.83% 0.48% 0.31% 0.70% 0.35% 0.17%

RDB HDD 55.15% 61.25% 66.08% 73.58% 55.27% 55.34% 55.65%
Total 56.55% 62.07% 66.56% 73.89% 55.97% 55.69% 55.82%

DRAM 1.41% 0.82% 0.45% 0.27% 0.71% 0.35% 0.18%

VMDK HDD 54.86% 60.32% 63.16% 67.10% 59.79% 62.92% 71.24%
Total 56.27% 61.14% 63.61% 67.36% 60.49% 63.27% 71.42%

Table: The storage costs relative to the baseline which indexes all fingerprints in

DRAM. NDPL-128 is NDPL of a 128:1 uniform sampling ratio.

@ Via exploiting locality, the storage cost reduces by about 40%.

@ Near-exact deduplication reduces the memory footprint, however it
generally increases the total storage cost.
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Choosing Sampling Method in NDPL
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Figure: Impacts of varying sampling method on NDPL. Points in each line are of
different sampling ratios, which are 256, 128, 64, 32, 16, and 1 from left to right.

@ The uniform sampling achieves significantly better deduplication ratio
than the random sampling.
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