
.

Design Tradeoffs for Data Deduplication Performance
in Backup Workloads

Min Fu†, Dan Feng†, Yu Hua†, Xubin He‡, Zuoning Chen*,
Wen Xia†, Yucheng Zhang†, Yujuan Tan§

†Huazhong University of Science and Technology
‡Virginia Commonwealth University

*National Engineering Research Center for Parallel Computer
§Chongqing University

Feb. 19, 2015

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 1 / 32

.

Background

In big data era,
! we had 4.4 ZB of data in 2013, and expectedly to grow by 10-fold in

2020 [IDC’2014];
! data redundancy widely exists in real-world applications.

Data deduplication is a scalable compression technology
! non-overlapping chunking
! no byte-by-byte comparison (fingerprinting)

A significantly lower computation overhead than traditional
compression technologies

! faster due to coarse-grained compression
! higher compression ratio since it looks for duplicate chunks in a larger

scope. (The entire system VS. a limited compression window)

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 2 / 32

.

An Overview of a Typical Deduplication System

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 3 / 32

.

Motivations

Challenges to design an efficient deduplication system
! Chunking
! Indexing
! Defragmenting
! Restoring
! Garbage collecting
! ...

We have a huge number of papers, solutions, and design choices
! Which one is better?
! Better in what?

⋆ backup performance, restore performance,
deduplication ratio, or memory footprint?

! How about their interplays?

.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 4 / 32

.

.
. .1 The Parameter Space

.
. .2 The DeFrame Framework

.
. .3 Evaluation

.
. .4 Conclusions

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 5 / 32

.

The Parameter Space

In this paper, we mainly explore
! fingerprint indexing,
! rewriting algorithm (in-line defragmenting),
! restore algorithm (cache replacement),
! and their interplays.

Parameter Space Descriptions

Indexing

Key-value mapping Mapping fingerprints to their prefetching units
Fingerprint cache In-memory fingerprint cache
Sampling Selecting representative fingerprints
Segmenting Splitting the unit of logical locality
Segment selection Selecting segments to be prefetched
Segment prefetching Exploiting segment-level locality

Defragmenting (rewriting) Reducing fragmentation
Restoring Designing restore cache/algorithm

Table: The major parameters we discuss.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 6 / 32

.

Indexing Bottleneck

A deduplication system requires a huge key-value store to identify
duplicates

An in-memory key-value store is not cost-efficient:
! Amazon.com: a 1 TB HDD costs $60, and an 8 GB DRAM costs $80
! suppose 4KB-sized chunks and 32-byte-sized key-value pair
! indexing 1 TB unique date requires an 8 GB-sized key-value store

An HDD-based key-value store easily becomes the performance
bottleneck, compared to the fast CDC chunking (400 MB/s and
102,400 chunks per sec under commercial CPUs)

Modern fingerprint indexes exploit workload characteristics (locality)
of backup systems to prefetch and cache fingerprints

Hence, a fingerprint index consists of two major components:
! key-value store
! fingerprint prefetching/caching module

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 7 / 32

.

The Fingerprint Index Taxonomy

Figure: Categories of existing work.

Classification according to the use of key-value store
! Exact Deduplication (ED): fully indexing stored fingerprints
! Near-exact Deduplication (ND): partially indexing stored fingerprints

Classification according to the prefetching policy
! Logical Locality (LL): the chunk sequence before deduplication
! Physical Locality (PL): the physical layout of stored chunks

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 8 / 32

.

Exact vs. Near-exact Deduplication

Exact Deduplication (ED) indexes all stored fingerprints
! a huge key-value store on disks
! fingerprint prefetching/caching to improve backup throughput

Near-exact Deduplication (ND) indexes only sampled (representative)
fingerprints

! a small key-value store in DRAM
! fingerprint prefetching/caching to improve deduplication ratio

ND trades deduplication ratio for higher backup/restore performance
and lower memory footprint

! Does a lower memory footprint indicate a lower financial cost?
! To avoid an increase of the storage cost, ND needs to achieve 97% of

the deduplication ratio of ED.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 9 / 32

.

Exploiting Physical Locality

The key-value store maps a fingerprint to its physical location, i.e., a
container.

Weakness: the prefetching efficiency decreases over time due to the
fragmentation problem.

! Older containers have many useless fingerprints for new backups.

For Near-exact Deduplication, how to select (sample) representative
fingerprints in each container?

! Selects the fingerprints that mod R = 0 in a container, or
! Selects the first fingerprint every R fingerprints in a container.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 10 / 32

.

Exploiting Logical Locality

The key-value store maps a fingerprint to its logical location, i.e., a
segment in a recipe.

The segment serves as the prefetching unit

Advantage: no fragmentation problem
Weakness: extremely high update overhead to the key-value store

! Even duplicate fingerprints have new logical locations (in new recipes
and new segments).

! Optimization: only update sampled duplicate fingerprints.

How to segmenting and sampling?

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 11 / 32

.

Design Choices for Exploiting Logical Locality

BLC Extreme Binning Sparse Indexing SiLo
Exact deduplication Yes No No No
Segmenting method FSS FDS CDS FSS & FDS
Sampling method N/A Minimum Random Minimum
Segment selection Base Top-all Top-k Top-1

Segment prefetching Yes No No Yes
Key-value mapping relationship 1:1 1:1 Varied 1:1

Table: Existing work exploiting logical locality.

Segmenting: Fixed-Sized Segmenting (FSS), File-Defined Segmenting
(FDS), and Content-Defined Segmenting (CDS)

Sampling: Uniform, Random, and Minimum.

Segment selection: Base, Top-k , and Mix.

Segment prefetching: exploiting segment-level locality.

Key-value mapping: each representative fingerprint can refer to a
varied number of logical locations.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 12 / 32

.

Defragmenting and Rewriting Algorithm

The rewriting algorithm is an emerging dimension to reduce
fragmentation.
What is the fragmentation?

! The deviation between the logical locality and physical locality.

The fragmentation hurts the restore (read) performance, and the
backup performance of the fingerprint index exploiting physical
locality.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 13 / 32

.

Existing Rewriting Algorithms

Buffer-based algorithm
! CFL-based Selective Deduplication [Nam’2012]
! Context-Based Rewriting [Kaczmarczyk’2012]
! Capping [Lillibridge’2013]

History-aware algorithm
! History-Aware Rewriting [Fu’2014]

How about their interplays with the state-of-the-art fingerprint
indexes?

! How does the rewriting algorithm improve the fingerprint index
exploiting physical locality?

! How do the different prefetching schemes affect the efficiency of the
rewriting algorithm?

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 14 / 32

.

The Restore Algorithm

While the rewriting algorithm determines the chunk layout, the restore
algorithm improves restore performance under limited memory.

! How to write, and then how to read.

Existing restore algorithms:
! traditional LRU cache
! Belady’s optimal replacement cache
! rolling forward assembly area [Lillibridge’2013]

How about their interplays with the rewriting algorithm?

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 15 / 32

.

The DeFrame Architecture

Fingerprint index: duplicate identification
! key-value store
! fingerprint prefetching/caching

Container store: container management (physical locality)

Recipe store: recipe management (logical locality)

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 16 / 32

.

The Backup Pipeline

Dedup phase identifies duplicate/unique chunks
Rewrite phase identifies fragmented duplicate chunks
Filter phase determines whether write a chunk
Advantage: we can implement a new rewriting algorithm without the
need to modify the fingerprint index, and vice versa.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 17 / 32

.

The Restore Pipeline

Read recipe phase reads the recipe and output fingerprints

Restore algorithm phase receives fingerprints and fetch chunks from
the container store

Reconstruct file phase receives the chunks and reconstruct files

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 18 / 32

.

Garbage Collection

Users can set a retention time for the backups.

All expired backups will be deleted automatically by DeFrame.

How to reclaim the invalid chunks becomes a major challenge.
! We develop History-Aware Rewriting algorithm to aggregate valid

chunks into fewer containers
! We develop Container-Marker Algorithm to reclaim invalid containers.

More details can be found in our ATC’14 paper.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 19 / 32

.

Experimental Setups

Dataset name Kernel VMDK RDB
Total size 104 GB 1.89 TB 1.12 TB

of versions 258 127 212
Deduplication ratio 45.28 27.36 39.1
Avg. chunk size 5.29 KB 5.25 KB 4.5 KB
Self-reference < 1% 15-20% 0
Fragmentation Severe Moderate Severe

Table: The characteristics of our datasets.

Kernel: downloaded from kernel.org

VMDK: 127 consecutive snapshots of a virtual machine disk image

RDB: 212 consecutive snapshots of a Redis database

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 20 / 32

kernel.org

.

Metrics and Our Goal
.
Quantitative Metrics
..

.

. ..

.

.

Deduplication ratio: the original backup data size divided by the size
of stored data.

Memory footprint: the runtime DRAM consumption.

Storage cost: the total cost of HDDs and DRAM for stored chunks
and the fingerprint index.

Lookup/update request per GB: the number of lookup/update
requests to the key-value store to deduplicate 1 GB of data.

Restore speed: 1 divided by mean containers read per MB of restored
data.

It is practically impossible to find a solution that performs the best in
all metrics.
We aim to find a solution with the following properties:

! sustained, high backup performance as the top priority.
! reasonable tradeoffs in the remaining metrics.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 21 / 32

.

EDPL vs. EDLL

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200lo
ok

up
 re

qu
es

ts
pe

r G
B

backup version

EDPL
EDLL(R=16)

EDLL(R=32)
EDLL(R=64)

EDLL(R=128)
EDLL(R=256)

(a) Lookup overhead

 1000

 10000

 100000

 50 100 150 200up
da

te
 re

qu
es

ts
pe

r G
B

backup version

EDPL
EDLL(R=16)

EDLL(R=32)
EDLL(R=64)

EDLL(R=128)
EDLL(R=256)

(b) Update overhead

Figure: Comparisons between EDPL and EDLL in terms of lookup and update
overheads. R = 256 indicates a sampling ratio of 256:1. Results come from RDB.

EDPL suffers from the ever-increasing lookup overhead.

For EDLL, the sampling optimization is efficient.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 22 / 32

.

NDPL vs. NDLL

(a) NDPL (b) NDLL

Figure: Comparing NDPL and NDLL under different cache sizes. The Y-axis
shows the relative deduplication ratio to exact deduplication.

NDLL performs better in Kernel and RDB, but worse in VMDK than
NDPL.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 23 / 32

.

The Interplays Between Fingerprint Index and Rewriting
Algorithm

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 50 100 150 200 250

lo
ok

up
 re

qu
es

ts
pe

r G
B

backup versions

EDPL
EDLL

EDPL + HAR
EDLL + HAR

(a)

0%

20%

40%

60%

80%

100%

Kernel RDB VMDKre
la

tiv
e

de
du

pl
ic

at
io

n
ra

tio

EDPL NDPL EDLL NDLL

(b)

Figure: (a) How does HAR improve EDPL in terms of lookup overhead in
Kernel? (b) How does fingerprint index affect HAR? The Y-axis shows the
relative deduplication ratio to that of exact deduplication without rewriting.

Exact Deduplication exploiting Physical Locality (EDPL) has the best
interplays with the rewriting algorithm (HAR).

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 24 / 32

.

The Interplays Between Rewriting and Restore Algorithm

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 50 100 150 200 250

re
sto

re
 sp

ee
d

backup version

LRU w/o HAR
ASM w/o HAR

OPT w/o HAR
LRU + HAR

ASM + HAR
OPT + HAR

Figure: EDPL is used as the fingerprint index

When HAR is used, the optimal cache is better; otherwise, the rolling
forward assembly area is better.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 25 / 32

.

Conclusions

We propose a taxonomy to understand the parameter space of data
deduplication.

We design and implement a framework to evaluate the parameter
space.

We present our experimental results, and draw the following
recommendations.

Subspace Recommended parameter settings Advantages

EDLL
content-defined segmenting lowest storage cost

random sampling sustained backup performance

NDPL uniform sampling
lowest memory footprint
simplest logical frame

NDLL
content-defined segmenting lowest memory footprint

similarity detection & segment prefetching high deduplication ratio

EDPL an efficient rewriting algorithm
sustained high restore performance

good interplays with the rewriting algorithm

Table: How to choose a reasonable solution according to required tradeoff.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 26 / 32

.

Thank You!

Q & A

DeFrame is released at www.github.com/fomy/destor

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 27 / 32

.

Exploiting Similarity for NDLL

Figure: This figure shows the workflow of the Top-k similarity detection.

Observations: NDLL works better than NDPL in datasets where
self-references are rare, but worse in datasets where self-references are
common.

! Self-references are duplicates in a single file (backup).

We could exploit similarity to improve deduplication ratio.

Advantage: higher deduplication ratio than the Base procedure.

Weakness: more complicated procedure and an additional buffer,
compared to the Base procedure.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 28 / 32

.

The efficiency of similarity detection

Figure: Impacts of the segment selection (s), segment prefetching (p), and
mapping relationship (v) on deduplication ratio.

On the X-axis, we have parameters in the format (s, p, v).
! s could be Base and Top-k (k varies from 1 to 4).
! p varies from 1 to 4.
! v varies from 1 to 4.

They finally achieve 90% of the deduplication ratio of exact
deduplication.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 29 / 32

.

The efficiency of similarity detection

Figure: Impacts of the segment selection (s), segment prefetching (p), and
mapping relationship (v) on segments read.

The segment prefetching is complementary with Top-k .

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 30 / 32

.

Storage cost

Dataset Fraction EDPL/EDLL NDPL-64 NDPL-128 NDPL-256 NDLL-64 NDLL-128 NDLL-256

Kernel
DRAM 1.33% 0.83% 0.49% 0.31% 0.66% 0.34% 0.16%
HDD 57.34% 65.01% 70.56% 77.58% 59.03% 59.83% 60.23%
Total 58.67% 65.84% 71.04% 77.89% 59.69% 60.17% 60.39%

RDB
DRAM 1.40% 0.83% 0.48% 0.31% 0.70% 0.35% 0.17%
HDD 55.15% 61.25% 66.08% 73.58% 55.27% 55.34% 55.65%
Total 56.55% 62.07% 66.56% 73.89% 55.97% 55.69% 55.82%

VMDK
DRAM 1.41% 0.82% 0.45% 0.27% 0.71% 0.35% 0.18%
HDD 54.86% 60.32% 63.16% 67.10% 59.79% 62.92% 71.24%
Total 56.27% 61.14% 63.61% 67.36% 60.49% 63.27% 71.42%

Table: The storage costs relative to the baseline which indexes all fingerprints in
DRAM. NDPL-128 is NDPL of a 128:1 uniform sampling ratio.

Via exploiting locality, the storage cost reduces by about 40%.

Near-exact deduplication reduces the memory footprint, however it
generally increases the total storage cost.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 31 / 32

.

Choosing Sampling Method in NDPL

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

m
em

or
y

fo
ot

pr
in

t (
K

B)

deduplication ratio

uniform
random

Figure: Impacts of varying sampling method on NDPL. Points in each line are of
different sampling ratios, which are 256, 128, 64, 32, 16, and 1 from left to right.

The uniform sampling achieves significantly better deduplication ratio
than the random sampling.

Min Fu
†
, Dan Feng

†
, Yu Hua

†
, Xubin He

‡
, Zuoning Chen

*
, Wen Xia

†
, Yucheng Zhang

†
, Yujuan Tan

§
(
†
Huazhong University of Science and Technology

‡
Virginia Commonwealth University

*
National Engineering Research Center for Parallel Computer

§
Chongqing University)Design Tradeoffs for Data Deduplication Performance in Backup WorkloadsFeb. 19, 2015 32 / 32

	The Parameter Space
	The DeFrame Framework
	Evaluation
	Conclusions

