Skylight – A Window on Shingled Disk Operation

Abutalib Aghayev, Peter Desnoyers
Northeastern University
What is Shingled Magnetic Recording (SMR)?

- A new way of recording tracks on the disk platter.
- Evolutionary – uses existing infrastructure.
- Fits more tracks onto platter → increases capacity.
- Disallows random writes → increases complexity.
Disk Drive Internals

- Actuator
- Platter
- Tracks
- Write Head
- Read Head
- Head Assembly
Conventional Magnetic Recording

Write Head

Read Head

Platter
Shingled Magnetic Recording

Write Head

Read Head

Platter
Shingled Magnetic Recording

- Write Head
- Read Head
- Block
- Platter
Shingled Magnetic Recording

Memory

Platter
Shingled Magnetic Recording

Write Head

Read Head

Guard Region

Platter
SMR Drive Implementations

- Host-Managed
 - Reports band to host.
 - Bands must be written sequentially.
 - Random writes or reads before writes will fail.

- Host-Aware
 - Reports band to host.
 - Also handles random writes – backward compatible.

- Drive-Managed
 - Hides SMR details.
 - Drop-in replacement for existing drives.

This talk is about characterizing Drive-Managed SMR drives.
Drive-Managed SMR

Read arbitrary block Write arbitrary block

Shingle Translation Layer (STL)

Read arbitrary block that was written Sequentially write arbitrary band

Shingled Magnetic Recording
Drive-Managed SMR

- Small region of disk, called persistent cache, used for staging random writes.
- Other non-volatile memory like flash can also be used for persistent cache.
- Disk is mapped at band granularity; persistent cache uses extent mapping.
Drive-Managed SMR

- Aggressive Cleaning starts when idleness is detected.
- Lazy Cleaning starts when the cache is almost full

Bands are shown in green. Persistent Cache is shown in orange.
Outline

• Introduction to SMR
• Characterization goals and test setup
• Test results
Characterization Goals

- Drive Type
- Persistent Cache Type
- Cache Location and Layout
- Cache Size
- Cache Map Size
- Band Size

- Block Mapping
- Cleaning Type
- Cleaning Algorithm
- Band Cleaning Time
- Zone Structure
- Shingling Direction
Skylight Components

• Software part:
 – Launch crafted I/O operations using `fio`.
 – Disable kernel read-ahead, drive look-ahead, on-board volatile cache.
 – Use latency to infer drive properties.

• Hardware part:
 – Install a transparent window on the drive.
 – Track the head movements using a high-speed camera.
 – Convert movements to head position graphs.
Emulation Strategy

- STLs from the literature implemented as Linux device-mapper targets.

Drive-Managed SMR with persistent disk cache

Drive-Managed SMR with persistent flash cache
Tested Drives

- **Emulated Drives**
 - All were emulated using a 4TB conventional Seagate drive.
 - | Drive Name | Cache Type | Cache Location | Band Size | Capacity |
 - |------------------|------------|-------------------|-----------|----------|
 - | Emulated-SMR-1 | Disk | Single at ID | 40 MiB | 3.9 TB |
 - | Emulated-SMR-2 | Flash | N/A | 25 MiB | 3.9 TB |
 - | Emulated-SMR-3 | Disk | Multiple | 20 MiB | 3.9 TB |

- **Real Drives**
 - 5TB and 8TB Seagate drive-managed SMR drives.
 - We only show 5TB results – labeled as Seagate-CMR.
- All disk drives are 5900RPM => ~10 ms rotation time.
Outline

- Introduction to SMR
- Characterization goals and test setup
- Test results
Test 1: Discovering the drive type and the persistent cache type

- Test exploits unusual random write behavior in SMR drives.
- Write blocks in the first 1GiB in random order.
- If latency is fixed then the drive is SMR, otherwise it is a conventional magnetic recording (CMR).
- Sub-millisecond latency indicates a drive with a persistent flash cache.
Random Write latency

- Y-axis varies in each graph.
- Conventional drive (Seagate-CMR) stands out from the rest.
- Emulated drive with persistent flash cache has sub-ms latency.
- Latency is high for the real SMR drive.
Random Write Latency + Head Position

- There is a persistent cache at the outer diameter (OD).
- Writes are (likely) piggy backed with out-of-band data.
- There is (likely) a persistent cache map stored at the middle diameter.
Random Writes with Max Queue Depth

- Different write sizes produce equal latencies.
- Latency increases in ~5ms jumps.
- Given ~10ms rotation time, ~5ms is ~ half-track increase in write size.
Host Write vs Internal Write

One Track One Track Half Track

Out-of-band Data Journal Entry

4KiB Host Write
Wasted Space

2.5 track Internal Write = ~25ms
Journal Entries with Quantized Sizes

- 2.5 track Internal Write = ~25ms
- 3 track Internal Write = ~30ms
Test 2: Discovering Disk Cache Location and Structure

- Test exploits a phenomenon called “fragmented reads”.
- Fragmented read: during sequential read, seek to the persistent cache and back to read an updated block.
- Force fragmented reads at different offsets to infer persistent cache location based on seek time.
Fragmented Read at 5TB Offset

- Head seeks back and forth between a track and persistent cache.
- Persistent Cache is at OD, therefore, 5TB offset is at ID.
- Block numbering convention starts at OD proceeds towards ID.
Fragmented Read Latency at Low, Middle, and High Offsets

- **Emulated-SMR-1**: avg. latency high at low offset => cache at ID.
- **Seagate-SMR**: avg. latency is high at high offset => cache at OD.
- **Emulated-SMR-3**: avg. latency is roughly fixed => distributed cache.
Test 3: Discovering the Band Size

- Test relies on the fact that cleaning proceeds at a band granularity.
- Choose a small region (~1GiB) and write blocks in random order.
- Pause for a short (~3-5s) period, letting the cleaner to clean a few bands.
- Sequentially read the blocks in the region.
- Most latencies will be random – a streak of flat latencies will identify a band.
Sequential Read of Random Writes

- Emulated-SMR-1 band size is 40MiB.
- Emulated-SMR-2 band size is 25MiB, cache reads are sub-ms due to persistent flash cache.
- Emulated-SMR-3 band size is 20 MiB.
- Seagate-SMR band size is 36MiB, becomes smaller towards the ID.
Conclusion

- Drive-Managed SMR drives have different performance characteristics.
- Using them efficiently will require changes to software stack.
- Skylight aims to guide these changes.
- We aim for generality, more work may be needed.
- Tests, STL source code, video clips are available at http://sssl.ccs.neu.edu/skylight