
ViewBox
Integrating Local File Systems with

Cloud Storage Services

Yupu Zhang+, Charlotte Dragga+*,

Andrea Arpaci-Dusseau+, Remzi Arpaci-Dusseau+

+University of Wisconsin – Madison

*NetApp, Inc.

2/18/2014 1

Personal Cloud Storage Services

• Exploding in popularity
• Numerous providers: Dropbox, Google Drive, SkyDrive …

• Large user base: Dropbox has more than 100 million users

• Promising benefit
• Reliable backup on the cloud

• Automatic synchronization across clients/devices

2/18/2014 2

There are so many copies…
My data must be safe... Really?

Is Your Data Really Safe?

• Data corruption
• Uploaded from local machine to cloud

• Propagated to other devices/clients

2/18/2014 3

1

• Crash inconsistency
• Inconsistent data ends up everywhere

• “Out-of-sync” synchronization

111

Is Your Data Really Safe?

2/18/2014 4

1

1

after reboot

sync client thinks everything is in sync

Is Your Data Really Safe?

• Causal inconsistency
• Files are uploaded out of order

• Cloud state does not match a valid FS state

2/18/2014 5

thumbnail

2/18/2014 6

Many copies do
NOT

make your data safe

• Local file system is the weakest link

• Corruption and inconsistency are exposed

Why? – File Systems

2/18/2014 7

≠file system state correct state

• Ad-hoc synchronization is harmful

• Sync client sees what regular application
sees, but not what file system sees

Why? – Sync Services

2/18/2014 8

≠cloud state file system state

Can we achieve

with existing systems?

2/18/2014 9

cloud state file system state correct state= =

Our solution: ViewBox

• Local detection + Cloud-aided recovery
• Rely on strong local file system to detect problems

• Utilize cloud data to recover from local failures

• Orchestrated synchronization based on views
• In-memory snapshots of valid file system state

• Sync client sees what file system sees

2/18/2014 10

integrated file system and cloud storage

file system state = correct state

cloud state = file system state

Results

• ViewBox runs on top of existing systems
• Enhance ext4 with data checksumming

• Work with unmodified Dropbox and modified Seafile

• ViewBox provides better reliability
• No global data pollution

• Automatic recovery with cloud data

• ViewBox incurs minimal overhead
• Less than 5% overhead for most workloads

• Up to 30% reduction of synchronization time in some cases

2/18/2014 11

Outline

• Introduction

• Motivation
• Data Corruption

• Crash Inconsistency

• Causal Inconsistency

• Design and Implementation

• Evaluation

• Conclusion

2/18/2014 12

Experiment Setup

• File systems (on Linux)
• ext4 w/ ordered journaling

• ext4 w/ data journaling

• ZFS

• Synchronization services
• Dropbox

• ownCloud

• Seafile

2/18/2014 13

File SystemD1File System

• Inject corruption to a synchronized file on disk

• Perform various workloads
• data writes, metadata changes (touch, chmod, etc.)

• Check if corruption is propagated

D2

Data Corruption – Method

2/18/2014 14
Regular Write Fault Injection

M MD1 D2 D3 D1 D2 D3x

D2 M

Data Corruption – Results

2/18/2014 15

FS Service Data Writes
Metadata Changes

mtime ctime atime

ext4

Dropbox L G L G L G L

ownCloud L G L G L L

Seafile L G L G L G L G

L: local corruption G: global corruption D: detected R: recovered

Corruption is uploaded even when there is no data change

Data Corruption – Results

2/18/2014 16

FS Service Data Writes
Metadata Changes

mtime ctime atime

ZFS

Dropbox D D D L

ownCloud D D L L

Seafile D D D D

No automatic recovery using cloud data

L: local corruption G: global corruption D: detected R: recovered

Corruption is detected when it is read

Data Corruption – Lessons

• Where do synchronization services fail?
• Rely on file-level monitoring mechanism, e.g., inotify

• Have to read whole file to identify changes

• Cannot tell between legitimate changes and corruption

• Where do file systems fail?
• Many file systems do not checksum data

2/18/2014 17

Outline

• Introduction

• Motivation
• Data Corruption

• Crash Inconsistency

• Causal Inconsistency

• Design and Implementation

• Evaluation

• Conclusion

2/18/2014 18

D3 D4

• A file is synchronized at V0 on disk and cloud

• Update the file from V0 to V1

• Inject a crash and observe sync client’s behavior

Crash Inconsistency - Method

2/18/2014 19

M

M

D1 D2 D3

D1 D2

V0 V1

M D1 D2

D3

a mix of V0 and V1

Crash Inconsistency – Results

2/18/2014 20

FS Service
Upload

Local Version
Download

Cloud Version
Out of Sync

ext4
(ordered)

Dropbox YES NO YES

ownCloud YES YES YES

Seafile N/A N/A N/A

Inconsistent local version gets uploaded

Fails to synchronize local changes

YES: occurred NO: did not occur N/A: no result Erratic behaviors

Crash Inconsistency – Results

2/18/2014 21

FS Service
Upload

Local Version
Download

Cloud Version
Out of Sync

ext4 (data)
or

ZFS

Dropbox YES NO NO

ownCloud YES YES NO

Seafile YES NO NO

Local version is always consistent

May violate causal consistency

YES: occurred NO: did not occur N/A: no result

Crash Inconsistency – Lessons

• Where do synchronization services fail?
• Depend on their own metadata tracking

• Inconsistent with file system metadata upon crash

• Where do file systems fail?
• Metadata journaling cannot provide data consistency

2/18/2014 22

Outline

• Introduction

• Motivation
• Data Corruption

• Crash Inconsistency

• Causal Inconsistency

• Design and Implementation

• Evaluation

• Conclusion

2/18/2014 23

Causal Inconsistency – Method

• Write a series of files in a specified order

• See if these files are synchronized in correct order

2/18/2014 24

Local Cloud

a

b

c

Causal Inconsistency – Results

• The causal ordering can be violated in all three
services on both ZFS and ext4

2/18/2014 25

May not directly use data on cloud for recovery

Cloud

a

b

c

Local

Causal Inconsistency – Lessons

• Where do synchronization services fail?
• Synchronize files out of order

• Where do file systems fail?
• No efficient mechanism to provide a static and

consistent view to sync services

2/18/2014 26

Summary

• Both file systems and sync services are responsible
for these failures
• Many file systems lack strong reliability mechanisms

• What sync clients see is different from what local file
systems see

2/18/2014 27

file system state correct state≠

cloud state file system state≠

cloud state file system state correct state≠ ≠

Summary (cont.)

• Not all problems can be avoided by switching to
advanced file systems

• No automatic recovery with cloud data

2/18/2014 28

File System
Corruption
Detection

Crash
Consistency

Causal
Consistency

Recovery
using Cloud

ext4 (metadata)

ext4 (data)

ZFS

Outline

• Introduction

• Motivation

• Design and Implementation
• ViewBox Overview

• Local Detection & Cloud-aided Recovery

• View-based Synchronization

• Evaluation

• Conclusion

2/18/2014 29

ViewBox Overview

• Local detection
• No corruption/inconsistency is spread

• Cloud-aided Recovery
• Restore file system to correct state upon failure

• View-based Synchronization
• Present file system’s view to sync service

• Basis for consistency and correct recovery

2/18/2014 30

ext4-cksum

View Manager

Cloud Helper

Dropbox
Client

File System

Dropbox Architecture

2/18/2014 31

Local Cloud

inotify

1

Dropbox
Client

inotify File System

11

1

1

file 1
modified

Dropbox Architecture

2/18/2014 32

Local Cloud

1

File
Versioning

Dropbox
Client

File System

Dropbox Architecture

2/18/2014 33

Local Cloud

inotify

Other
Applications

1

1

1

1

Dropbox client sees the
same file system state
as other applications

File Systemext4-cksum

ViewBox Architecture

2/18/2014 34

Local Cloud

inotify

Dropbox
Client

View
Manager

FS’s view

Other
Applications

ViewBox presents FS’s
view to Dropbox client

Other applications’ view
remains the same

ext4-cksum is dedicated
to the entire sync folder

Dropbox
Client

ext4-cksum

1 21 2

1 2

FS’s view1 2

1 2

1 2

inotify

View
Manager

file 1
modified

file 2
modified

ViewBox Architecture

2/18/2014 35

Local Cloud

File-system
Snapshot

ext4-cksum

211
x

2
x

FS’s view

Cloud
Helper

1 2

ViewBox Architecture

2/18/2014 36

Local Cloud

1 2

inotify

Dropbox
Client

View
Manager

2

Outline

• Introduction

• Motivation

• Design and Implementation
• ViewBox Overview

• Local Detection & Cloud-aided Recovery

• View-based Synchronization

• Evaluation

• Conclusion

2/18/2014 37

ext4-cksum – Local Detection

• Checksum region
• Pre-allocated space (~0.1% overhead)

• 32-bit CRC checksum per 4KB block

• 128KB checksum region for a 128MB block group

• Each checksum maps to a data block in the block group

• Detect data corruption & inconsistency
• More details in the paper

2/18/2014 38

Superblock
Group

Descriptors
Block

Bitmap
Inode

Bitmap
Inode
Table

Checksum
Region

Data
Blocks

Cloud Helper – Cloud-aided Recovery

• A user-level daemon
• Talks to local FS through ioctl

• Communicates with the server through web API

• Upon data corruption
• Fetches correct block from cloud

• After crash, two types of recovery
• Recovers inconsistent files

• Rolls back entire file system to the latest synced view

2/18/2014 39

Outline

• Introduction

• Motivation

• Design and Implementation
• ViewBox Overview

• Local Detection & Cloud-aided Recovery

• View-based Synchronization

• Evaluation

• Conclusion

2/18/2014 40

View Manager – View-based Sync

• Create file system views

• Upload views to cloud through sync client

• Challenge 1 - How to provide consistency?
• ext4-cksum still runs in ordered mode
• Cloud journaling

• Challenge 2 - How to create views efficiently?
• No support from ext4-cksum
• Incremental snapshotting

2/18/2014 41

Challenge 1:
How to Guarantee Consistency?

• Cloud journaling
• Treat cloud storage as external journal
• Synchronize local changes to cloud at FS epochs

• i.e., when ext4-cksum performs a journal commit

• Three types of views
• Active view (local) => Current FS state
• Frozen view (local) => Last FS snapshot in memory
• Synced views (on cloud) => Previously uploaded views

• Roll back to the latest synced view upon failure

2/18/2014 42

Cloud Journaling Example

2/18/2014 43

E0 E1 E2 E3

Synced Views

Frozen View

Active View 5

FS Epoch

4

4

Cloud Journaling Example

2/18/2014 44

E0 E1 E2 E3

Synced Views

Frozen View

Active View

FS Epoch

4

5

54

Cloud Journaling Example

2/18/2014 45

E0 E1 E2 E3

Synced Views

Frozen View

Active View

FS Epoch

4

6

5

5

• Frozen view 5 has been uploaded completely

• Cannot freeze view 6 at this time

Cloud Journaling Example

2/18/2014 46

E0 E1 E2 E3

Synced Views

Frozen View

Active View

FS Epoch

4

5

5

6

• Create a new frozen view
• after the previous frozen view is synchronized
• and when FS reaches an epoch

6

Cloud Journaling Example

2/18/2014 47

E0 E1 E2 E3

Synced Views

Frozen View

Active View

FS Epoch

4 5

6

• Upon crash
• Roll back to from cloud

6

5

Server-side Changes

• Single-client scenario
• Always one-direction synchronization (client to cloud)

• No server-side changes are necessary

• ViewBox + Dropbox (unmodified)

• Multi-client scenario
• Server cannot propagate a partially-uploaded view

• Client must handle conflicts carefully

• ViewBox + Seafile (open-source, modified)

2/18/2014 48

Challenge 2:
How to Efficiently Freeze a View?

• A frozen view is short-lived and kept only in memory

• Requirements

• No changes to FS’s on-disk structures

• No delay to on-going FS operations

• Minimal memory overhead

• Incremental snapshotting

• Decouple namespace and data

2/18/2014 49

55

Incremental Snapshotting Example

2/18/2014 50

E0

Synced Views

Frozen View

Active View

FS Epoch

4

4

E1 E2

• Maintain last frozen view 4 in memory
• Only namespace is preserved

changed file

namespace

5

Incremental Snapshotting Example

2/18/2014 51

E0

Synced Views

Frozen View

Active View

FS Epoch

4

4

• Track updates in local FS through active view 5
• Log namespace changes and data changes in memory

E1 E2

changed file

namespace

5

Incremental Snapshotting Example

2/18/2014 52

E0

Synced Views

Frozen View

Active View

FS Epoch

4

4

• Freeze current active view 5
• Apply namespace changes to last frozen view 4

• File data is still kept in local FS, but marked COW

E1 E2

5
(COW)

6

Incremental Snapshotting Example

2/18/2014 53

E0

Synced Views

Frozen View

Active View

FS Epoch

4

• At the same time, active view 6 starts immediately
• On-going FS operations are not interrupted

• COWed data is copied over to frozen view 5 if necessary

E1 E2

5
changed file

namespace

changed file

namespace

5
(COW)

6

Incremental Snapshotting Example

2/18/2014 54

E0

Synced Views

Frozen View

Active View

FS Epoch

4

• Upload frozen view 5
• Re-generate inotify events

• Trick sync client to upload changes from frozen view 5

E1 E2

5
changed file

namespace

changed file

namespace

6
(COW)

Outline

• Introduction

• Motivation

• Design and Implementation

• Evaluation

• Conclusion

2/18/2014 55

Evaluation

• Questions to answer
• Can ViewBox offer integrity, consistency, and recoverability?

• What is the overhead of ViewBox during user workloads?

• Setup (for both server and client machines)
• 3.3GHz Intel Quad Core CPU, 16 GB memory

• 1TB Hitachi hard drive

• Linux kernel 3.6.11 (64-bit), ~7000 LOC added/modified

• Dropbox client 1.6.0

• Seafile client and server 1.8.0

2/18/2014 56

Reliability
• Data Corruption

• Crash consistency

• Causal ordering is preserved

2/18/2014 57

Service
Data

Writes

Metadata Changes

mtime ctime atime

ViewBox w/Dropbox D R D R D R D R

ViewBox w/Seafile D R D R D R D R

Service
Upload

Local Ver.
Download
Cloud Ver.

Out-of-sync
(no sync)

ViewBox w/Dropbox NO YES NO

ViewBox w/Seafile NO YES NO

L: Local corruption G: Global corruption
D: Detected R: Recovered

YES: occurred NO: did not occur

Performance - Photo Viewing

0

20

40

60

80

100

120

140

160

180

Dropbox Seafile

R
u

n
ti

m
e

(s
ec

)

ext4 ViewBox

2/18/2014 58

• iphoto_view from iBench [Harter2011]

• Sequentially view 400 photos

• Read-dominant

• Runtime
• Time taken to finish the workload

• ViewBox has <5% overhead

• Memory overhead
• < 20MB

Performance - Photo Viewing

0

100

200

300

400

500

600

700

Dropbox Seafile

Sy
n

c
ti

m
e

(s
ec

)

ext4 ViewBox

2/18/2014 59

• Sync time
• Time taken to finish synchronizing

• Huge increase in sync time with
ViewBox + Dropbox

• View metadata for Dropbox
• A list of {pathname, version

number}
• Remote walk ~1200 dirs (~1200

RTT) due to lack of proper server
support

• View metadata for Seafile
• Its internal commit ID

Performance - Photo Editing

2/18/2014 60

• iphoto_edit from iBench [Harter2011]

• Sequentially edit 400 photos

• Reads:Writes = 7:3

• 30% reduction in sync time with
ViewBox + Seafile

• Reduced interference from
foreground update
• Original Seafile may delay

uploading

• ViewBox keeps uploading
changes from frozen views

0

500

1000

1500

2000

2500

3000

Dropbox Seafile

Sy
n

c
ti

m
e

(s
ec

)

ext4 ViewBox

Conclusion

• Problem: Cloud storage services and file systems
fail to protect data

• Many copies do NOT always make data safe

• Solution: ViewBox

• Enhance local file systems with data checksumming

• Present file system’s view to sync service

• Tighter integration => more than reliability?
2/18/2014 61

cloud state file system state correct state≠ ≠

cloud state file system state correct state= =

Thanks! Questions?

Advanced Systems Lab (ADSL)

University of Wisconsin-Madison

http://www.cs.wisc.edu/adsl

Wisconsin Institute on Software-defined
Datacenters in Madison

http://wisdom.cs.wisc.edu/

2/18/2014 62

ViewBox: Integrating Local File Systems
with Cloud Storage Services

