OCTANE
(Open Car Testbed and Network Experiments): Bringing Cyber-Physical Security Research to Researchers and Students

6th Workshop on Cyber Security Experimentation and Test (CSET `13)
August 12, 2013
Washington, D.C.

Christopher E. Everett Damon McCoy
George Mason University
How OCTANE can help with security research!

- Advantages:
 - Sharing of portable XML files
 - Easy to use GUI for software package
 - Quick addition of network hardware
 - Straight-forward guidelines to setup/select hardware framework for testing
 - Software package to be released open source

- These advantages mean:
 - Your lab can be up and running faster and at a lower cost!
 - Your team does not have to worry about the network setup and configuration but can focus on your expertise – Security!
 - Your team can extend the software package to fit your needs instead of being limited by a commercial software package designed for network development.
Why is Automotive Security Testing Challenging?

<table>
<thead>
<tr>
<th>Positives</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive networks (e.g., CAN) are standardized</td>
<td>Limited documentation about propriety automotive network implementations of networks</td>
</tr>
<tr>
<td>Automotive network hardware is readily available off the shelf</td>
<td>Hardware is designed for testing and building the systems</td>
</tr>
<tr>
<td>Automotive network software is readily available off the shelf</td>
<td>Software is designed for testing and building the systems & is expensive</td>
</tr>
<tr>
<td>Automotive networks are readily available (most folks have a car)</td>
<td>Researchers do not want to use their own vehicles for invasive testing & purchasing new cars is expensive</td>
</tr>
<tr>
<td>Automotive parts are readily available (numerous stores selling parts)</td>
<td>Automotive parts infrastructure designed for replacement/repair</td>
</tr>
</tbody>
</table>
Solution: OCTANE

<table>
<thead>
<tr>
<th>Issues</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited documentation about propriety automotive network implementations of networks</td>
<td>Enables reverse engineering & storing of the discovered information in XML files</td>
</tr>
<tr>
<td>Hardware is designed for testing and building the systems</td>
<td>Hardware framework is selected based on research/teaching needs</td>
</tr>
<tr>
<td>Software is designed for testing and building the systems & is expensive</td>
<td>Software package is specifically designed for security testing & will be released open source</td>
</tr>
<tr>
<td>Researchers do not want to use their own vehicles for invasive testing & purchasing new cars is expensive</td>
<td>Hardware framework enables selection of low cost network setup</td>
</tr>
<tr>
<td>Automotive parts infrastructure designed for replacement/repair</td>
<td>Hardware framework provides a guide to selection of parts</td>
</tr>
</tbody>
</table>
OCTANE

• Software package and hardware framework for reverse engineering and testing of automotive networks

• Software Package
 • **Goal:** Facilitate reverse engineering and security testing
 • Architecture
 • XML automation
 • Packet monitor
 • Custom transmit

• Hardware Framework
 • **Goal:** Enable researchers/students to quickly setup an automobile network
 • Lab network setup
 • Real-world test setup
OCTANE Architecture

- Provides expansion opportunities
 - New hardware can quickly be added through the hardware layer without re-coding the GUI or processing layers
 - XML access provides access to a portable, human-readable file for storing and sharing information
XML Automation

• Enables storage and sharing of packets, messages, and ECU IDs for future use
• Provides a user the ability to quickly and accurately reproduce and identify network traffic

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><Packet></td>
<td></td>
<td></td>
</tr>
<tr>
<td><Name></td>
<td>Stop Network Communications</td>
<td><\Name></td>
</tr>
<tr>
<td><ID></td>
<td>210</td>
<td><\ID></td>
</tr>
<tr>
<td><DLC></td>
<td>2</td>
<td><\DLC></td>
</tr>
<tr>
<td><Message></td>
<td>104A</td>
<td><\Message></td>
</tr>
<tr>
<td><\Packet></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Future Improvements
 • Wildcards
 • Packet Sequences
 • Packet Responses
 • Packet Subroutines
 • Calculated Packet Responses
Bus Monitor

- Enables viewing of received network packets and transmission of selected packets back to the network.
- Provides a user the ability to test interactions with the network and test security features of the network.

CAN Packet Identity No.: 210
DLC: 2
Data: 10 4A
Custom Transmit

- Enables transmission of pre-configured packets to the network
- Provides a user the ability to test interactions with the network and test security features of the network
Hardware

- **Lab Network Setup**
 - Process to select parts to meet research types, automotive network types, automobile types, adapters, and budget

- **Real-World Test Setup**
 - Process to select automobiles that meet automotive network types, automobile types, adapters, and access

From: Wikimedia Commons

- 2013 Chevrolet Cruze
- 2011 Chevrolet HHR
- 2010 Toyota Matrix
Research and Teaching Opportunities

- **Research Opportunities**
 - Firewall
 - Intrusion Detection System
 - Packet Encryption
 - ECU Authentication
 - ECU Security

- **Teaching Opportunities**
 - Undergraduate Lab Security Exercise
 - Undergraduate Lab Embedded Programming Exercise
 - Graduate Security Testing Exercise
OCTANE Advantages

- Portable XML files
- GUI for fast and accurate packet receipt and transmission
- GUI for creation of XML files
- Wide variety of network hardware
- Hardware framework provides many options for researchers
- Open source software package enables sharing and extensions

Results in:
- Faster setup and configuration!
- Cheaper setup and configuration!
- More time spent on security setup and testing!
Wrap-Up & Discussion

- Future Work / Thoughts
 - XML Automation Extensions
 - Sharing of XML files useful?
 - How would security testing be changed?
 - Remote Access
 - Open the door for researchers to test solutions on other automotive networks?
 - Would researchers/students use remote access?
 - Firewalls
 - Too complicated for CAN networks?
 - Who would manage rules?
 - ECU Security
 - Is ECU built-in security too complicated for automotive manufacturing environment?
 - Who would manage keys/security authorization?