

Usable Security
- The Source Awakens -

Matthew Smith – University of Bonn

“Users Are Not the Enemy” 	

Angela Sasse ’99	

“Developers Are Not the Enemy Either” 	

CyLab Usable Privacy and Security Laboratory http://cups.cs.cmu.edu/ 4

FF2 Warning

Adapted from Jonathan Nightingale

4.5M	
 unique	
 cer-ficates	
 in	
 2013	

610k	
 “bad”	
 cer-ficates	

123456

correct horse
battery staple

h=ps://xkcd.com/936/	

stackoverflow.com	

Administrators	

and	
 Developers	

End	
 Users	

Trust	
 me!	
 I’m	
 an	
 engineer!	

Story 1
HTTPS

The	
 default	
 Android	
 HTTPS	
 API	
 	

implements	
 correct	
 cer-ficate	
 valida-on.	

A:	
 Look	
 at	
 this	
 tutorial	

h=p://blog.antoine.li/.../android-­‐trus-ng-­‐ssl-­‐cer-ficates	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 stackoverflow.com	

Q:	
 I	
 am	
 geVng	
 an	
 error	
 of	

„javax.net.ssl.SSLExcep-on:	
 Not	

trusted	
 server	
 cer-ficate“.	
 	

	

[...]	

	

I	
 have	
 spent	
 40	
 hours	
 researching	

and	
 trying	
 to	
 figure	
 out	
 a	

workaround	
 for	
 this	
 issue.	

Usable	
 Security	
 and	
 Privacy	
 Lab	
 –	
 Universität	
 Bonn	

TrustManager

DummyTrustManager

AcceptAllTrustManager OpenTrustManager

SimpleTrustManager

NonValida-ngTrustManager FakeTrustManager

EasyX509TrustManager NaiveTrustManager

Sta-c	
 analysis	
 of	
 13.500	
 popular	
 Android	
 Apps	
 found	

thousands	
 of	
 vulnerable	
 Apps	
 	

•  Cherry-­‐picked	
 100	
 apps	

–  21	
 apps	
 trust	
 all	
 cer-ficates	

–  20	
 apps	
 accept	
 all	
 hostnames	

•  Captured	
 creden-als	
 for:	

–  American	
 Express,	
 Diners	
 Club,	
 Paypal,	
 bank	
 accounts,	
 Facebook,	

Twi=er,	
 Google,	
 Yahoo,	
 Microsok	
 Live	
 ID,	
 Box,	
 WordPress,	
 remote	

control	
 servers,	
 arbitrary	
 email	
 accounts,	
 and	
 IBM	
 Same-me,	
 among	

others.	

These 41 Apps had an
install base between

39 – 185 million devices!

Problem à Solution

Evalua-ng	
 With	
 Users	

Evalua-ng	

Without	
 Users	

Cogni-ve	
 Walkthrough	

Heuris-c	
 Evalua-on	

Model-­‐Based	
 Evalua-on	

Qualita5ve	

Silent	
 Observa-on	

Think	
 Aloud	

Construc-ve	
 Interac-on	

Retrospec-ve	
 Tes-ng	

Interviews	

	

Quan-ta-ve	

Controlled	
 Experiments	

Ques-onnaires	
 	

	

USEC	
 Methods	

“This	
 app	
 was	
 one	
 of	
 our	
 first	
 mobile	
 apps	
 and	
 when	

we	
 no;ced	
 that	
 there	
 were	
 problems	
 with	
 the	
 SSL	

cer;ficate,	
 we	
 just	
 implemented	
 the	
 first	
 working	

solu;on	
 we	
 found	
 on	
 the	
 Internet.”	
 	

	

“We	
 use	
 self-­‐signed	
 cer;ficates	
 for	
 tes;ng	
 purposes	
 and	

the	
 easiest	
 way	
 to	
 make	
 them	
 working	
 is	
 to	
 remove	

cer;ficate	
 valida;on.	
 Somehow	
 we	
 must	
 have	
 forgoFen	

to	
 remove	
 that	
 code	
 again	
 when	
 we	
 released	
 our	
 app.“	
 	
 	

	

“[...]	
 When	
 I	
 used	
 Wireshark	
 to	
 look	
 at	
 the	
 traffic,	
 Wireshark	
 said	

that	
 this	
 is	
 a	
 proper	
 SSL	
 protected	
 data	
 stream	
 and	
 I	
 could	
 not	
 see	

any	
 cleartext	
 informa;on	
 when	
 I	
 manually	
 inspected	
 the	
 packets.	

So	
 I	
 really	
 cannot	
 see	
 what	
 the	
 problem	
 is	
 here.”	
 	

	
 	

	

“The	
 app	
 accepts	
 all	
 SSL	
 cer;ficates	
 because	
 some	

users	
 wanted	
 to	
 connect	
 to	
 their	
 blogs	
 with	
 self-­‐
signed	
 certs	
 and	
 […]	
 because	
 Android	
 does	
 not	

provide	
 an	
 easy-­‐to-­‐use	
 SSL	
 cer;ficate	
 warning	

message,	
 it	
 was	
 a	
 lot	
 easier	
 to	
 simply	
 accept	
 all	
 self-­‐
signed	
 cer;ficates.”	
 	

	
 	

	
 vs.

C
A

V
al
id
at

io
n

C
A

P
in
ni
ng

C
er

ti
fic

at
e
P
in
ni
ng

D
ev

el
op

m
en

t
M

od
e

L
og

gi
ng

V
al
id
at

io
n

St
ra

te
gi
es

Standard X — — — — —
Our approach X X X X X P

Table 1: A comparison between the status quo and
our approach concerning validation features.
X = supported out of the box;
� = custom code required;
P = pluggable.

org.apache.http.conn.ssl

SSLSocketFactory
start

Force hostname
verification

android.net.ssl

TrustManagerClient
(in app)

Force certificate validation;
Configurable by the users

android.net.ssl

TrustManagerService
(in system)

Pluggable Certificate
Validation:
(CA-based validation, CT,
AKI, TACK, etc.)

javax.net.ssl

TrustManager
replaced by

User options
Developer options

Turn on/o↵ SSLPinning,
Accept all certificates
on developer devices

Human Com-
puter Interface

Warn the user if con-
nection is insecure

Existing architectureOur modifications

uses

uses

configures

decisions

w
arn

ifSSL
validation

fails

removed

Figure 1: This figure illustrates the process of creat-
ing an SSL protected network connection. The grey
boxes comment on our contributions.

To this end, we provide the TrustManagerClient and Trust-

ManagerService that replace the capabilities of Android’s
default TrustManager (cf. Figure 1). We only modify meth-

ods which are private and final, thus binary compatibility is
given and we do not break modularity. More information on
the compatibility of our approach can be found in Section 6.2
and Appendix B. Both the client and service part of our SSL
validation implementation prevent Android apps from us-
ing broken certificate validation. Upon creation of a socket,
the newly developed TrustManagerClient automatically re-
quests SSL certificate validation from the service counter-
part. App developers cannot circumvent secure validation
anymore, since customized TrustManager implementations
are prevented by our modification. The TrustManagerSer-

vice enforces SSL certificate validation against the trusted
root CAs and can drop the connection or present the user
with a warning message in case validation fails (more on this
in Section 5.2.4).
To mandate secure hostname verification, we patched all

stock hostname verifiers to enforce browser compatible host-
name verification. We also added hostname verification to
the central SSLSocketFactory (cf. Figure 1). Hostname ver-
ification is conventionally delegated to the application layer:
With HTTPS for example, the hostname for verification is
extracted from the requested URL. In contrast, Android’s
SSLSocketConnection implementation does not check the
hostname, even though it may have been provided in the
method call. Our patch improves this behavior by verifying
hostnames with the parameters provided during connection
establishment for any SSL connection.
This strict enforcement could cause developer issues in

some usage scenarios described by our study participants,
so several configuration options are described in the follow-
ing in order to adapt our solution to di↵erent situations.
Additionally, we discuss potential pathological cases in the
appendix (see App. B.1).

5.2.2 Self-Signed Certificates
To allow developers to use self-signed certificates for test-

ing purposes, we add a new option (cf. Figure 2) to the
Developer settings, allowing app developers to turn o↵ SSL
certificate validation for specific apps installed on their de-
vice without needing to modify the code of their app. This
option is monitored by the TrustManagerService and skips
certificate validation for this app only. These settings only
a↵ect the specific app on the developer device, not the apps
deployed onto users’ devices or other apps on the developer’s
device. Thus, even if developers forget to turn on certificate
validation again, this has no e↵ect on apps on user devices.
This feature e↵ectively protects users from forgetful devel-
opers and solves many of the problems we discovered during
code analysis and interviews.
We only allow this option on devices that have developer

settings enabled. Thus, app developers have a simple way to
work with self-signed certificates during development while
preventing careless users from turning o↵ SSL certificate val-
idation for their apps.4 Nonetheless, we show a warning
message using strong wording that advises against abuse
(cf. Fig. 2(b)) when this option is toggled.

4While it is conceivable that users annoyed by warning mes-
sages could find information online on how to activate de-
veloper options and then turn o↵ certificate validation for a
specific app, we believe this risk is fairly low compared to
the huge benefit this option brings. Additionally, we recom-
mend limiting this option to devices that are registered with
Google developer accounts to prevent normal users from

✔  HTTPS can be secure on Android
✔  Backwards compatible for 13.500 apps
 except
✘  19 apps that implemented pinning
✔  updating those to the new pinning
 system would be very easy

Story 2
Malware Analysis

P2P	
 Zeus	
 Sample	

1,571	
 goto	
 statements	
 in	
 50k	
 LoC	

Hex-­‐Rays:	
 Simda	
 malware	
 -­‐	
 Domain	
 genera-on	
 algorithm	

DREAM++	
 Simda	
 malware	
 -­‐	
 Domain	
 genera-on	
 algorithm	

Evalua-ng	
 With	
 Users	

Evalua-ng	

Without	
 Users	

Cogni-ve	
 Walkthrough	

Heuris-c	
 Evalua-on	

Model-­‐Based	
 Evalua-on	

Qualita-ve	

Silent	
 Observa-on	

Think	
 Aloud	

Construc-ve	
 Interac-on	

Retrospec-ve	
 Tes-ng	

Interviews	

	

Quan5ta5ve	

Controlled	
 Experiments	

Ques-onnaires	
 	

	

USEC	
 Methods	

Malware Analysis Study

§  3 Decompilers

§  HexRays
§  DREAM
§  DREAM++

§  6 Analysis Tasks

§  21 Students

§  9 Analysts

“The code mostly looks like a straightforward C translation of
machine code; besides a general sense about what is going on, I

think I'd rather just see the assembly.” - DREAM

“This code looks like it was written by a human, even if many of
the variable names are quite generic. But just the named index

variable makes the code much easier to read! ” – DREAM++

Students

§  Solved 3 times as many
tasks with DREAM++ than
with Hex-Rays

Experts
§  Solved 1.5 times as many

task with DREAM++ than
with Hex-Rays

“Developers Are Not the Enemy” 	

