

 École polytechnique fédérale de Lausanne

Carmela Troncoso

EPFL A collaborative (continued) sprint

March 2020 - Start

April 2020 – **GAEN is announced**

May 2020 - Final version DP3T

June 2020 - Pilot SwissCovid (& other EU apps)

July 2020 – SwissCovid launch

August/September 2020 – **Towards** international interoperability

September/November 2020 – Presence tracing

Decentralized Privacy-Preserving Proximity Tracing

Version: 25 May 2020. Contact the first author for the latest version.

EPFL: Prof. Carmela Troncoso, Prof. Mathias Payer, Prof. Jean-Pierre Hubaux, Prof. Marcel Salathé, Prof. James Larus, Prof. Edouard Bugnion, Dr. Wouter Lueks, Theresa Stadler, Dr. Apostolos Pyrgelis, Dr. Daniele Antonioli, Ludovic Barman, Sylvain Chatel

ETHZ: Prof. Kenneth Paterson, Prof. Srdjan Čapkun, Prof. David Basin, Dr. Jan Beutel, Dr. Dennis Jackson, Dr. Marc Roeschlin, Patrick Leu

KU Leuven: Prof. Bart Preneel, Prof. Nigel Smart, Dr. Aysajan Abidin

TU Delft: Prof. Seda Gürses

University College London: Dr. Michael Veale

CISPA: Prof. Cas Cremers, Prof. Michael Backes, Dr. Nils Ole Tippenhauer

University of Oxford: Dr. Reuben Binns

University of Torino / ISI Foundation: Prof. Ciro Cattuto

Aix Marseille Univ, Université de Toulon, CNRS, CPT: Dr. Alain Barrat

IMDEA Software Institute: Prof. Dario Fiore

INESC TEC: Prof. Manuel Barbosa (FCUP), Prof. Rui Oliveira (UMinho), Prof. José Pereira (UMinho)

A collaborative (continued) sprint Marathon

March 2020 - Start

April 2020 – **GAEN is announced**

May 2020 - Final version DP3T

June 2020 – Pilot SwissCovid (& other EU apps)

July 2020 – SwissCovid launch

August/September 2020 – **Towards international interoperability**

September/November 2020 – **Presence tracing**

Decentralized Privacy-Preserving Proximity Tracing

Version: 25 May 2020.

Contact the first author for the latest version.

EPFL: Prof. Carmela Troncoso, Prof. Mathias Payer, Prof. Jean-Pierre Hubaux, Prof. Marcel Salathé, Prof. James Larus, Prof. Edouard Bugnion, Dr. Wouter Lueks, Theresa Stadler, Dr. Apostolos Pyrgelis, Dr. Daniele Antonioli, Ludovic Barman, Sylvain Chatel

ETHZ: Prof. Kenneth Paterson, Prof. Srdjan Čapkun, Prof. David Basin, Dr. Jan Beutel, Dr. Dennis Jackson, Dr. Marc Roeschlin, Patrick Leu

KU Leuven: Prof. Bart Preneel, Prof. Nigel Smart, Dr. Aysajan Abidin

TU Delft: Prof. Seda Gürses

University College London: Dr. Michael Veale

CISPA: Prof. Cas Cremers, Prof. Michael Backes, Dr. Nils Ole Tippenhauer

University of Oxford: Dr. Reuben Binns

University of Torino / ISI Foundation: Prof. Ciro Cattuto

Aix Marseille Univ, Université de Toulon, CNRS, CPT: Dr. Alain Barrat

IMDEA Software Institute: Prof. Dario Fiore

INESC TEC: Prof. Manuel Barbosa (FCUP), Prof. Rui Oliveira (UMinho), Prof. José Pereira (UMinho)

Maintenance and support

EPFL A collaborative (continued) sprint Marathon Ironman

March 2020 - Start

April 2020 - GAEN is announced

May 2020 - Final version DP3T

June 2020 – Pilot SwissCovid (& other EU apps)

July 2020 – SwissCovid launch

August/September 2020 – **Towards international interoperability**

September/November 2020 – **Presence tracing**

Decentralized Privacy-Preserving Proximity Tracing

Version: 25 May 2020.

Contact the first author for the latest version.

EPFL: Prof. Carmela Troncoso, Prof. Mathias Payer, Prof. Jean-Pierre Hubaux, Prof. Marcel Salathé, Prof. James Larus, Prof. Edouard Bugnion, Dr. Wouter Lueks, Theresa Stadler, Dr. Apostolos Pyrgelis, Dr. Daniele Antonioli, Ludovic Barman, Sylvain Chatel

ETHZ: Prof. Kenneth Paterson, Prof. Srdjan Čapkun, Prof. David Basin, Dr. Jan Beutel, Dr. Dennis Jackson, Dr. Marc Roeschlin, Patrick Leu

KU Leuven: Prof. Bart Preneel, Prof. Nigel Smart, Dr. Aysajan Abidin

TU Delft: Prof. Seda Gürses

University College London: Dr. Michael Veale

CISPA: Prof. Cas Cremers, Prof. Michael Backes, Dr. Nils Ole Tippenhauer

University of Oxford: Dr. Reuben Binns

University of Torino / ISI Foundation: Prof. Ciro Cattuto

Aix Marseille Univ, Université de Toulon, CNRS, CPT: Dr. Alain Barrat

IMDEA Software Institute: Prof. Dario Fiore

INESC TEC: Prof. Manuel Barbosa (FCUP), Prof. Rui Oliveira (UMinho), Prof. José Pereira (UMinho)

Technology to help with pandemic contention

Manual tracing overwhelmed

- The need
 - A complement to notify users that have been exposed to COVID19 and they are at risk of infection
 - In a timely, efficient, and scalable manner

- Protect from misuse (surveillance, manipulation, etc)
 - Purpose limitation by default

COVID contact tracing sheet leaves 'creepy' barman to text model

Comment

Digital Staff • TNEWS Published: Saturday, 12 September 2020 3:03 AM

Australia's spy agencies caught collecting COVID-19 app data

Zack Whittaker @zackwhittaker / 4:32 PM GMT+1 • November 24, 2020

Covid 19 coronavirus: Subway worker 'harassed' woman customer after getting details for contact tracing

14 May, 2020 08:23 PM ③ 3 minutes to read

- Protect health-related data
- Protect from misuse (surveillance, manipulation, etc)
 - Purpose limitation by default
 - hide users identity, location, and behavior (social graph)

- Protect health-related data
- Protect from misuse (surveillance, manipulation, etc)
 - Purpose limitation by default
 - hide users identity, location, and behavior (social graph)
- Preserve system integrity
 - Prevent false alarms & Denial of Service

The "hidden" constraint Reality

High scalability and reliability

- Design under time pressure!
 - Need fast, robust verification
 - KISS principle: Keep It Simple Stupid
 - Avoid new technologies or non-mainstream
 - Use existing infrastructure
 - BLE beacons
- Dependencies, dependencies

The system design Our first idea

- The App creates a secret key (SK) and from this key it derives random identifiers (EphIDs) that it broadcasts via Bluetooth
- Secret keys are rotated every day SK_{t+1}=H(SK_t)
- EphID₁ || ... || EphID_n = PRG(PRF(SK_t, "broadcast key"))
- A random identifier is used for a limited amount of time
- Without the key, no-one can link two identifiers

The system design First quicksand pond...

- The App creates a secret key (SK) and from this key it derives random identifiers (EnhIDs) that it broadcasts via Bluetc
 Secre SK_{t+1}=
 EphID₁ st key"))
 A rand amour
- Without the key, no-one can link two identifiers

Reality Use existing infrastructure

Carmela Troncoso

- Battery and CPU usage
 - Limited round trips
 - Google and Apple must be involved
- Run in the background
 - Apple must be involved
- Compatibility Android iOS
 - Google and Apple must be involved

- Implications on privacy engineering
 - Implications for epidemiology and exposure estimation (no time in this talk...)
 - Implications for privacy when internationalizing (no time in this talk...)

The system design Platform decides Exposure Notification

 The App creates a secret every day (TEK) and from this key it derives random identifiers (RPIs) that it broadcasts via Bluetooth

The system design Platform decides Exposure Notification

- The App creates a secret every day (TEK) and from this key it derives random identifiers (RPIs) that it broadcasts via Bluetooth
- A random identifier is used for a limited amount of time
- Without the key, no-one can link two identifiers

The system design

Only information that ever leaves the phone are the TEKs broadcasted during the contagious period.

No identity, **no** location, **no** information about others

No information available for abuse

System sunsets-by-design

ī

Authorization mechanism Our first design

- Crucial for security: only true positives can upload
 - Desired properties:
 - Privacy
 - Hard to delegate
 - Crypto FTW! Commit to content in authorization token!

Authorization mechanism

- armela Ironcos
- Crucial for security: only true positives can upload
 - Desired properties:
 - Privacy
 - Hard to delegate
 - Crypto FTW! Commit to content in authorization token!

Health systems/staff are not digitalized everywhere

- Simple activation codes sent via phone/mail/sms
- Different level of automatization
- Belgium went for (light) commitments!

Carmela Troncoso

Privacy engineering Are we done?

Privacy engineering Are we done?

Existence of upload

Privacy of uploads Our first idea

Existence of upload

DP3T design paper

The pattern associated with the upload of identifiers to the server would reveal the COVID-19 positive status of users to network eavesdroppers (ISP or curious WiFi provider) and tech-savvy adversaries. If these adversaries can bind the observed IP address to a more stable identifier such as an ISP subscription number, then they can de-anonymize the confirmed positive cases. This can be mitigated by using dummy uploads. These

Privacy of uploads Practice

What is users' behavior?

Privacy of uploads Practice

What is users' behavior?

- Constraints associated to the platform
 - Bandwidth
 - Server capacity
 - Battery

Privacy of uploads Practice

What is users' behavior?

- Bandwidth
- Server capacity
- Battery

Privacy of uploads Practice

- Unknown environment
 - What is users' behavior?
- Constraints associated to the platform

- Bandwidth
- Server capacity
- Battery

Plausible deniability (constant time & size)

Privacy of uploads Practice – there is authentication!

Privacy of uploads Practice – there is authentication!

Privacy of uploads Practice – there is authentication!

- Dummies also must realize the authentication step
 - Servers must consider dummies
 - Ensure equal timing and volume

Privacy of uploads Practice - G

- Exposure Notification API (<v1.5) had one security mechanism:
 - Only reveal key after it expires
 - (Not needed, it is an implementation decision)
- Implications on authorization and dummy strategy
 - Cannot delay all keys!

Privacy of uploads

Practice - G

- Only reveal key after it expires
- (Not needed, it is an implementation decision)

- Cannot delay all keys!
- Dummies must mimic second upload

- Load Balancer, Firewall
 - More information than expected!
 - Off the shelf cloud managing tools
- Careful design of logging to avoid forensics
 - Coarse logging at key server
 - Only counts logged for statistics
 - e.g, active users based on dummy traffic
- Logging strategy re-designed N times

Carmela Troncoso

Where is this deployed?

1.87 Million active users (~22% population)

~18000 COVID-positive users uploaded their keys in December (15% of PCR in Switzerland)

Field experiment in Zurich October 2020

- 80% COVID-positive app users upload their codes
- 22% sent quarantine
- 1 in 10 tested positive after notification
- 5% of positives with respect to Manual Contact Tracing in Zurich
- Speed: ~1 day faster notification for non-household exosures (70% of the cases)

https://www.experimental.bfs.admin.ch/expstat/en/home/innovative-methods/swisscovid-app-monitoring.html https://github.com/digitalepidemiology/lab/swisscovid efficacy/blob/master/SwissCovid efficacy MS.pdf

https://www.ebpi.uzh.ch/dam/jcr:5fc56fb7-3e7e-40bf-8df4-1852a067a625/Estimation%20of%20SwissCovid%20effectiveness%20for%20the%20Canton%20of%20Zurich%20in%20September%202020_V1.5.pdf https://www.medrxiv.org/content/10.1101/2020.12.21.20248619v1.full.pdf

Key lessons

Data is not a must!

- Privacy engineering goes well beyond crypto
- Privacy engineering in an agile/service world is exhausting
 - Platforms and requirements continuously change

- Good socio-technical integration is key to success and it is hard
 - Purpose limitation and abuse prevention is a must

Carmela Tror