
Protecting Firefox data
with Content Signature

Updating Firefox
Updates

Add-ons

Data

Updates Security

● Updates are signed with PKCS1 using
hard coded RSA keys

● Add-ons are signed with PKCS7 using an
internal PKI

● Data signing? no good solution...

Serving data through web APIs
Industry best-practice: HTTPS and trust the
backend. That has two problems:

1. HTTPS interception
2. Compromise of the web frontend

● 4% of Firefox Updates are being intercepted
(source: The Security Impact of HTTPS Interception)

HTTPS Interception

https://jhalderm.com/pub/papers/interception-ndss17.pdf

Compromise of web API
● Written using modern web frameworks

○ Partially audited, change too often
○ Risks in the supply chain (insecure deps)

● Development agility vs security

● Better model: reduce security pressure
by signing data in air-gapped backend

Content Signature
A Content Signature guarantees the
integrity of data collections sent to Firefox

It does not
● protect confidentiality
● protect availability
● replay of prior revisions

Content Signature
A Content Signature is
● an ECDSA P-384 signature
● on the SHA2-384 hash of the data
● encoded using DL/ECSSA representation

of the R and S values
● in Base64 URL Safe

9_YUTeoubIAcWX5TzjB2INOV1_E9KZfIrJsa6uFqTlL_XmPb2lj_qY2n3BRJZ1sfZ
Hf033JqO14yKEiv3iwzuveWQjSGqfYnSAzW7PiCrJXMfHXoVVEsLknzhyAcRww1

Internal Firefox PKI
● End-entity signing certs are issued by an

internal PKI, same as add-ons

● Intermediate certs are constrained to
*.content-signature.mozilla.org

● Firefox downloads the cert chain using an
x5u value in the signature (hash of the
root is hardcoded).

Delivering Content Signatures

Two methods:

● HTTP response
header

● Signature field in
API response

Content
Signature

Data

HTTP 200 OK
Content-Type: application/json
[
 {
 "signature": {
 "timestamp": "2017-12-14T22:42:00.911332Z",
 "signature": "9_YUTeoubIAcWX5TzjB2INOV1_E9KZfIrJsa6uFqT",
 "x5u": "https://content-signature.cdn.moz,
 },

 "recipe": {
 "id": 402,
 "last_updated": "2017-12-14T17:56:48.182873Z",
 "name": "Pioneer Study: Online News - Log Upload Attempt Interval Pref",
 "enabled": true,
 "is_approved": true,

[...]

https://content-signature.cdn.mozilla.net/chains/normandy.content-signature.mozilla.org-20180209.prod.chain?cachebust=2017-06-13-21-06

Verifying Content Signatures

Web API
- Parse Signature
- Retrieve chain

CDN

Signed
Data

- EE
- inter
- root

Certificate
Chain

- Parse chain
- Verify chain/root
- Compare EE CN
 with app name
- Verify ECDSA sig

Operational Security
● Only air-gapped backends can talk to the

signing service, no public access

● Signing certs are moderately short lived
(90 days) to reduce risk of a leaked old
cert being reused fraudulently

● PKI root is stored in offline HSMs

Some interesting problems

● Checking certificate validity

● Measuring verification failures

● Preparing for emergency revocations

Checking certificate validity

Logarithmic scale of Firefox clients with sorted by clock accuracy, in days

● 1.2% of clients have bad clocks, most within 30 days
● 0.11% have clocks beyond 30 days

Checking certificate validity
● Signature verification fails when client clock

is outside of cert validity

● We enforce validity checks, meaning clients
with bad clocks don’t get the data

● Limit impact by using 90 days certs with 30
days wiggle room before & after

Measuring validation failures
● Firefox drops the data when the

signature does not validate

● Getting a ping when that happens is
critical to debugging
○ We plan to use Firefox Telemetry to get a ping

when a signature fails
○ Future work: identify how/why that happens

Emergency revocations

● Revoking a leaked end-entity or
intermediate can use OneCRL
○ takes a few minutes and propagates quickly
○ Side note: OneCRL is also signed using Content

Signature

● Revoking the root takes a Firefox update,
which still uses separate hardcoded keys.

Implementation complexity

● Moderate initial effort, ongoing maintenance
is lightweight

● +800 LOC in Firefox; 4000 LOC in Backend

● Fairly small team
● Julien Vehent
● Franziskus Kiefer
● Bob Micheletto
● Mark Goodwin
● Martin Thomson
● Remy Hubscher
● Michael Cooper
● Nan Jiang

Thank You!
Check out the code, it’s online:

● Backend at go.mozilla.org/autograph

● Firefox verification code is under
security/ manager/ ssl/
ContentSignatureVerifier.cpp

https://searchfox.org/mozilla-central/source/security/manager/ssl/ContentSignatureVerifier.cpp
https://searchfox.org/mozilla-central/source/security/manager/ssl/ContentSignatureVerifier.cpp

