The Impact of Third-party Code on Android App Security

Erik Derr
Third-party Code – A Double-edged Sword

Eases software development
- Code re-use
- Faster development, less costs

Increases apps’ attack surface
- Code from different origins
- Trust closed-source components
Risk Estimation

2,000,000,000 components with known vulnerabilities are downloaded / year

Outdated libs have a 3x higher probability to include vulnerabilities

OWASP Top 10 Security Risks (since 2013)
“Using components with known vulnerabilities”
Quantify Security Impact

Measure the status quo of outdated libs in the software ecosystem

Identify apps that use lib versions with known vulnerabilities

Attribute new vulnerabilities to the correct component (library / app code)

Requires a reliable detection of libraries in app binaries
Detection Challenges on Android

Developer View

- Explicit declaration
- Libraries / versions known

Compiled App

- Monolithic bytecode
- Same Origin

Obfuscated App

- Identifier renaming
- Dead code elimination
Common Analysis Approach

```java
public void myTest(int, int, String) {
    code code code
    code code code
    if (..) {
        code code code
        code code code
    } else
    code = doSomething(data);
}

private int doSomething(String) {
    while (true) {
        obfuscatedCall
        obfuscatedCall
        if (..) {
            return data;
        }
    }
    return otherData;
}
```

Static (Byte)Code Analysis Data Structures (CFG, CG, ..)

Imprecision Scalability
package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}

package com.facebook.widget;
public class someClass {
 {..}
}

package com.google.ads.util;
public class myClass {
 public void myTest(int, int, String) {
 }
 private int doSomething(String) {
 }
}
Profiling Apps & Libraries

Merkle Tree

- Parent hash generated from child hashes
- Efficient integrity checks for large data structures
- Sort hashes for deterministic build order
Method Hashing

Idea: Replace anything that is prone to identifier renaming

```java
signature com.myClass.do(android.content.Context, int, com.Foo) com.Session
descriptor (android.content.Context, int, com.Foo) com.Session
fuzzy descriptor (android.content.Context, int, X) X
```

Side-effect: Error introduced at method layer to defeat obfuscation
But, error decreases when building the entire tree
Profile Matching

App Tree

Full Match

Library Version Tree

Package Hash

Package Hash

Class Hash

Class Hash

Class Hash
Profile Matching

Partial Match
90% of original library code
Measuring Library Outdatedness

Apps including Facebook SDK

- Account Hijacking Vulnerability (version 3.15)
Vulnerability Lifetime

Released apps with vulnerable Facebook SDK *(before / after release of patched SDK)*

Patched SDK v3.16 released (18 Jul 2014)

Vulnerable SDK v3.15 released (12 Jun 2014)

Released apps with *patched / removed* Facebook SDK
Call for Action

Android Ecosystem

Need for Development Tools

Library Developer
simplify updates

Additional Platform Support
(dependency manager)

Market Operator
adopt state-of-the-art analyses

Need for Development Tools

Android Ecosystem

Library Developer
simplify updates

Market Operator
adopt state-of-the-art analyses

Additional Platform Support
(dependency manager)
Takeaways

Third-party libraries are a double-edged sword
- Consider potential security risks

Reliable library detection
- Quantify security impact of third-party code
- Raise awareness

No silver bullet
- Requires combined effort to improve status quo more sustainably
LibScout is Open-Source!

https://github.com/reddr/LibScout

- Growing library DB (>230 libs, >4,500 versions)
- Detected more than 20k apps with vulnerable libs