§I
L]

LLC Attacks

Applicability & Countermeasures

Gorka lrazoqui Xiaofel (Rex) Guo

PhD student in WPI Security researcher at Intel

girazoki@wpi.edu http://rexfly.net

ANDROID DEVICES VULNERABLE TO ARMAGEDDON CACHE ATTACK

SECURITY NEWS | AUGUST 15, 2016

The paper ARMageddon: Cache Attacks on Mobile Devices have been included in 25th USENIX Security Symposium. The

ANDROID DEVICES VULNERABLE TO ARMAGEDDON CACHE ATTACK

SECURITY NEWS | AUGUST 15, 2016

The paper ARMageddon: Cache Attacks on Mobile Devices have been included in 25th USENIX Security Symposium. The

RISK ASSESSMENT —

Storing secret crypto keys in the Amazon
cloud? New attack can steal them

Technique allows full recovery of 2048-bit RSA key stored in Amazon's EC2 service.

DAN GOODIN - 9/28/2015, 2255 PM

ANDROID DEVICES VULNERABLE TO ARMAGEDDON CACHE ATTACK

SECURITY NEWS | AUGUST 15, 2016

The paper ARMageddon: Cache Attacks on Mobile Devices have been included in 25th USENIX Security Symposium. The

RISK ASSESSMENT —

Storing secret crypto keys in the Amazon

cloud? New attack can steal them
CacheBleed OpenSSL Vulnerability Affects Intel-

Technique allows full recovery of 2048-bit RSA key stored in Amazon's EC2 service. Based Cloud Servers
DAN GOODIN - 9/28/2015, 255 PM Only Sandy Bridge (and earlier) Intel CPUs are affected
Catalin Cimpanu 9 sFrfy o

Yesterday's OpenSSL updates (1.0.2g and 1.0.1s) not only brought a fix against
the already infamous DROWN attack but also patched seven other security
flaws, one labeled as high, one moderate, and five as low severity.

ANDROID DEVICES VULNERABLE TO ARMAGEDDON CACHE ATTACK

SECURITY NEWS | AUGUST 15, 2016

The paper ARMageddon: Cache Attacks on Mobile Devices have been included in 25th USENIX Security Symposium. The

RISK ASSESSMENT —

Storing secret crypto keys in the Amazon

cloud? New attack can steal them
CacheBleed OpenSSL Vulnerability Affects Intel-

Technique allows full recovery of 2048-bit RSA key stored in Amazon's EC2 service. Based Cloud Servers
DAN GOODIN - 9/28/2015, 2:55 PM Only Sandy Bridge (and earlier) Intel CPUs are affected
Catalin Cimpanu ¥ srfyy
Security considerations and disallowing inter-Virtual Maching vesterday's OpenssL updates (1.0.2g and 1.0.15) not only brought a fix against
Tra nSpa rent Pag e Sha ri ng (2 08073 5) the already infamous DROWN attack but also patched seven other security

flaws, one labeled as high, one moderate, and five as low severity.

This article acknowledges the recent academic research that leverages Transparent Page Sharing (TPS) fo gain unautherized access fo data under
certain highly controlled conditions and documents Viviware's precautionary measure of restricting TPS to individual virtual machines by default in
upcoming ESXi releases. At this fime, Viware believes that the published information disclosure due to TPS between virtual machines is impractical in a
real world deployment.

Last Level Cache Attacks: Feasibility Trend?

Last Level Cache Attacks: Feasibility Trend?

Cache Attacks and Countermeasures: The Case of

{ Intel, Spark, AMD | Linux | OpenSSL AES
AES

Article in Lecture Notes in Computer Science 2005 - Januar; y 2005 with 26 Reads

1st Dag Amne Osvik 2nd Adi Shamir
il 4.67 - Customs Solutions Gi -

3rd Eran Tromer
114,96 - Tel Aviv Univ

Last Level Cache Attacks: Feasibility Trend?

{ Intel, Spark, AMD | Linux | OpenSSL AES

Cache Attacks and Countermeasures: The Case of
AES

Yet another MicroArchitectural Attack: : exploiting
[-Cache.

{ Intel | Linux | OpenSSL RSA

Conf Paper (PDF Available) - January 2007 with 32 Reads

DOI: 10.1145/1314466.1314469 - Source: DBLP
Conference: Proceedings of the 2007 ACM workshop en Computer Security Architecture, CSAW 2007, Fairfax, VA, USA, November 2, 2007

Last Level Cache Attacks: Feasibility Trend?

{ Intel, Spark, AMD | Linux | OpenSSL AES

Cache Attacks and Countermeasures: The Case of
AES

Yet another MicroArchitectural Attack: : exploiting
[-Cache.

{ Intel | Linux | OpenSSL RSA

FLUSH+RELOAD: A High Resolution, Low Noise, L3

{ Intel (Cross-core) | Linux
Cache Side-Channel Attack

(deduplication) | GhuPG RSA

Conference Paper - August 2014 with 13 Reads

nference: USENIX Security Symposium

1st Yuval Yarom 2nd Katrina Falkner
1.71 - University of Adelaide 16.03 - University of Adelaide

Last Level Cache Attacks: Feasibility Trend?

Cache Attacks and Countermeasures: The Case of
AES

Yet another MicroArchitectural Attack: : exploiting
[-Cache.

FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack

Last-Level Cache Side-Channel Attacks are Practical

Article - July 2015 with 30 Reads

DOI: 10.1109/5P.2015.43

1st Fangfei Liu 2nd Yuval Yarom
il 1.47 - Princeton University il 1.71 - University of Adelaide

3rd Qian ge Q. 41 Last Ruby B. Lee
1l 0.01 - UNSW Australia = 1l 26.61 - Princeton University

{ Intel, Spark, AMD | Linux | OpenSSL AES

{ Intel | Linux | OpenSSL RSA

Intel (Cross-core) | Linux
(deduplication) | GhuPG RSA

Intel (Cross-Core) | Linux (no
deduplication) | GhuPG RSA

Last Level Cache Attacks: Feasibility Trend?

Cache Attacks and Countermeasures: The Case of

{ Intel, Spark, AMD | Linux | OpenSSL AES
AES

Yet another MicroArchitectural Attack: : exploiting

{ Intel | Linux | OpenSSL RSA

I-Cache.

Intel (Cross-core) | Linux
(deduplication) | GhuPG RSA

Last_ Level Cache Side_Cl | Attack practical Intel (Cross-Core) | Linux (no
aSt-Level Cache side-CLhanne dCKS are Fractica deduplication) | GnuPG RSA

Cross Processor Cache Attacks AMD (cross CPU) | Linux | OpenSSL
AES and GnuPG El Gamal

FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack

1st Gorka Irazoqui 2nd Thomas Eisenbarth

Last Level Cache Attacks: Feasibility Trend?

Cache Attacks and Countermeasures: The Case of

{ Intel, Spark, AMD | Linux | OpenSSL AES

AES
Yet another MicroArchitectural Attack: : exploiting { Intel | Linux | OpenSSL RSA
[-Cache.

: : . Intel (Cross-core) | Linux
FLUSH+RELOAD: A High Resolution, Low Noise, L . .

5 3 { (deduplication) | GhuPG RSA

Cache Side-Channel Attack
Intel (Cross-Core) | Linux (no

Last-Level Cache Side-Channel Attacks are Practical deduplication) | GhuPG RSA

Cross Processor Cache Attacks AMD (cross CPU) | Linux | OpenSSL
ARMageddon: Last-Level Cache Attacks on Mobile AES and GnuPG El Gamal

Devices ARM (cross core/CPU) | Android |

Bouncy Castle AES

Article - November 2015 with 34 Reads

1st Moritz Lipp 2nd Daniel Gruss

3rd Raphael Spreitzer 4th Stefan Mangard
2.25 - Graz University of Technology

How do LLC attacks work?

Why Attack LLC?

Caches: fast access memories

Why Attack LLC?

Caches: fast access memories

y ~ Cache Hit: fast access
Processor = > Cache < > Memory
- ~/ Cache Miss: slow access

Why Attack LLC?

Caches: fast access memories

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data
Why LLC?

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data
Why LLC?

Intel i7-4770

L1 cache
(32 KB}

L3 cache
ALU (8 MB)

shared across cores

L2 cache
(256 KB)

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data
Why LLC?

Intel i7-4770

5 =
(32 KB)
L3 cache

ALU (8 MB)

shared across cores
L2 cache
=

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data
Why LLC?

Intel i7-4770

r —~
' ‘ |
(32 KB)
k el

L2 cache
(256 KB)

L3 cache
(8 MB)

shared across cores

Why Attack LLC?

Caches: fast access memories
Contention to guess recently used data
Why LLC?

Intel i7-4770

L3 cache
(8 MB)

shared across cores

L2 cache
(256 KB)

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data

Why LLC?

* Cross core, inclusiveness, high resolution..
Intel i7-4770

V —~

' ‘
(32 KB)

k el

L2 cache
(256 KB)

shared across cores

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data

Why LLC?

* Cross core, inclusiveness, high resolution..
Intel i7-4770

r —~
(32 KB)
‘ el

L2 cache
(256 KB)

~ ~ N
Core b Core \

. Lilcache L1l-cache

L1 D-cache 1 D-cache
L2 Cache L2 Cache L2 Cache L2 Cache
\& G 208 P o0

K L3 Cache /

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data

Why LLC?

* Cross core, inclusiveness, high resolution..
Intel i7-4770

r —~
(32 KB)
‘ el

L2 cache
(256 KB)

~ ~ N
Core b Core \

. Lilcache L1l-cache

1 D-cache
& 2% L%, Y,
K L3 Cache /

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data

Why LLC?

* Cross core, inclusiveness, high resolution..
Intel i7-4770

r —~
(32 KB)
‘ el

L2 cache
(256 KB)

~ ~ N
Core b Core \

. Lilcache L1l-cache

1 D-cache
& 2% L%, Y,
K L3 Cache /

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data

Why LLC?

* Cross core, inclusiveness, high resolution
Intel i7-4770

r —~
(32 KB)
‘ el

L2 cache
(256 KB)

1 D-cache
 Lticache UM Lilcache f
L2 Cache L2 Cache L2 Cache

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data

Why LLC?

* Cross core, inclusiveness, high resolution
Intel i7-4770

r —~
(32 KB)
‘ el

L2 cache
(256 KB)

1 D-cache
 Lticache UM Lilcache f
L2 Cache L2 Cache L2 Cache

Why Attack LLC?

Caches: fast access memories

Contention to guess recently used data

Why LLC?

* Cross core, inclusiveness, high resolution
Intel i7-4770

r —~
(32 KB)
‘ el

L2 cache
(256 KB)

1 D-cache
 Lticache UM Lilcache f
L2 Cache L2 Cache L2 Cache

Cache Architecture

Cache architecture:
» Set associative: Cache divided in n-way sets

« Location in the cache determined by physical address

—

Cache Architecture

Cache architecture:
» Set associative: Cache divided in n-way sets

« Location in the cache determined by physical address

—

v

MMU

g AV 4

Cache Architecture

Cache architecture:
» Set associative: Cache divided in n-way sets

« Location in the cache determined by physical address

G tag BO[... Bn

MMU
g AV 4

tag B0 Bn

Cache Architecture

Cache architecture:
» Set associative: Cache divided in n-way sets

« Location in the cache determined by physical address

Cache
G S1 tag BO| ... B
MMU '
N7
g b4 Sn| tasz |eO| Bn

Cache tag | Set | Byte
I |

Cache Architecture

Cache architecture:
» Set associative: Cache divided in n-way sets

« Location in the cache determined by physical address

Cache
G S1 tag BO| ... B
MMU '
N7
g b4 Sn| tasz |eO| Bn

Cache tag | Set | Byte
| —_ | |

Cache Architecture

Cache architecture:
» Set associative: Cache divided in n-way sets

« Location in the cache determined by physical address

Cache
G S1 tag BO| ... B
MMU '
N7
g b4 Sn| tasz |eO| Bn

Cache tag | Set | Byte
| —_ | |

Cache Architecture

Cache architecture:
» Set associative: Cache divided in n-way sets

« Location in the cache determined by physical address

Cache
G —> S1 tag BO| ... Br
MMU '
g A4 Sn tag BO| Bn

Cache tag | Set | Byte
| = | |

The Flush and Reload Attack

The first example: Flush and Reload

The Flush and Reload Attack

The first example: Flush and Reload

Assumptions: shared memory (e.g. KSM)

The Flush and Reload Attack

The first example: Flush and Reload

Assumptions: shared memory (e.g. KSM)

RAM

The Flush and Reload Attack

The first example: Flush and Reload

Assumptions: shared memory (e.g. KSM)

RAM

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!

RAM

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!

RAM

Security considerations and disallowing inter-Virtual Machine
Transparent Page Sharing (2080735)

This article acknowledges the recent academic research that leverages Transparent Page Sharing (TPS) to gain unauthorized access to data under
certain highly controlled conditions and documents Viware's precautionary measure of restricting TPS to incividual virtual machines by default in
upcoming ESXi releases. At this time, Viiware believes that the published information disclosure due to TPS between virtual machines is impractical in a
real world deployment.

The Flush and Reload Attack

The first example: Flush and Reload

Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!
Cache

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!

Cache

Attacker flushes

FLUSH

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache

Victim access/not access

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!
Cache

Attacker flushes

Victim access/not access

ACCESS

©

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache

Victim access/not access

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache

Victim access/not access

Attacker re-accesses

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!

Cache

Attacker flushes
Victim access/not access

Attacker re-accesses

RELOAD

i

The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!

Cache

Attacker flushes

0%
[—|nstruction in cache
03k m— |y struction in mernary
028+
£ 02y
E
[2]
8
g 01af
01k -
nos I RELOAD
D L L k. |
1] a0 100 140 200 240 300 30 400 450 500
Hardware cycles

The Prime and Probe Attack

The second example: Prime and Probe

No special assumptions

Cache

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

PRIME

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

PRIME

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

Victim accesses/not accesses

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

ACCESS

@
I

Victim accesses/not accesses

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

Victim accesses/not accesses

ACCESS

©

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

Victim accesses/not accesses

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

Victim accesses/not accesses

Attacker re-accesses

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

Victim accesses/not accesses

Attacker re-accesses

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

Victim accesses/not accesses

Attacker re-accesses

PROBE

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

Victim accesses/not accesses
Attacker re-accesses

Fast time: no access

PROBE

The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

Victim accesses/not accesses
Attacker re-accesses
Fast time: no access

Slow time: access

PROBE

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a,b):
Input : base b. modulus N, secret
E = (ex—1,...,€1,€0)
Output: b mod N

2 Ry =1; Rl =

3 fori =k —1 downto 0 do

4 if ¢;==0 then

3 Ry = Ry * Ry mod N;
6 Ry = Ry x Ry mod N;
7 end

8 else

9 RO=R0*R1 mod N;
10 Ry =R, * Ry mod N;
1 end

12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a,b):
Input : base b. modulus N, secret
E = (ek—1,...,€1,€0)
Output: b mod N

2 Ry =1; Rl =

3 for i =k —1 downto 0 do

s |L_if e;==0 then|

3 Ry = Ry * Ry mod N;
6 Ry = Ry x Ry mod N;
7 end

8 || else |

9 R():R()*Rl mod N;
10 Ry =R, * Ry mod N;
1 end

12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a,b):
Input : base b. modulus N, secret

E = (ek-1,...,€1,€0) Flush and Reload
Output: b mod N
2 Ry =1; Rl =
3 for i =k —1 downto 0 do
4 || if e;==0 then| .
s Ry, = Ro x R, mod N: Physical address
6 Ry = Ry * Ry mod N; W= P=0x7fffc480
7 end
8 || else |
9 RO=R0*R1 mod N;
10 Ry =R, * Ry mod N;
1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Re=1oRi= Cache
3 for i =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
7 end
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Re=1oRi= Cache
3 for i =k —1 downto 0 do
4 || if e;==0 then| .
s Ry, = Ro x R, mod N: Physical address
6 Ry = Ry * Ry mod N; W= P=0x7fffc480
7 end
8 || else |
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;

1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Re=1oRi= Cache
3 for i =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
7 end
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Bi=taBi=b Cache
3 for i =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
| oyt v, e o |
7 end
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Bi=taBi=b Cache
3 for i =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
N e
7 end
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;’_= (ex—1,--»€1,€0) Flush and Reload
Output: ™ mod N
2 Ro=1: Ry = b: Cache
3 for i =k —1 downto 0 do
4 || if e;==0 then| .
s Ry, = Ro x R, mod N: Physical address
6 Ry = Ry * Ry mod N; W= P=0x7fffc480
7 end
8 || else |
9 R():R()*Rl mod N;
10 Ry =R, * Ry mod N:

1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

y 5_= (eg-\n,---,el-eo) Prime and Probe
utput: b mod N

) 1?021; Ry = b: Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end

9 R():R()*Rl mod N;

10 Ry =Ry xRy mod N;

1 end

12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

B = (e 1517854 B0) Prime and Probe
Output: ™ mod N
2 Bi=taBi=b Cache
3 fori =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
7 end l
9 Ro = Ry x Ry mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (ek—1,-.-,€1,€0) Prime and Probe
Output: ™ mod N
2 Bai=1o By=b: Cache
3 fori=Fk—1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
7 end l
9 Ro = Ry x Ry mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

2 Ro=1; Ry = b; Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N;

1 end

12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

» Ry=1; Ry = b: Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

s |Lelse | _ SET=1554 mmp

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N:

1 end
12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

2 Ro=1; Ry = b; Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N;

1 end

12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

2 Ro=1; Ry = b; Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N;

1 end

12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

2 Ro=1; Ry = b; Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N;

1 end

12 end

13 return Ry:

How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

» Ry=1; Ry = b: Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

s |Lelse | _ SET=1554 mmp

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N:

1 end
12 end

13 return Ry:

Where are LLC attacks a threat?

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Victim

VM

?

VMM

Hardware

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]

Victim ‘
VM

VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]
Pros:

Victim ‘
VM

VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]
Pros:

Victim

 Own virtualized OS. Access to timers or huge pages ‘

VM

VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]
Pros:

 Own virtualized OS. Access to timers or huge pages =
 If deduplication enabled, both attacks are applicable ‘

VM

VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]
Pros:

Victim

 Own virtualized OS. Access to timers or huge pages ‘

 If deduplication enabled, both attacks are applicable

VM

cons: VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided
Example: RSA key retrieved in Amazon EC2 [INCI16]

Pros:

 Own virtualized OS. Access to timers or huge pages =

- If deduplication enabled, both attacks are applicable V::Am ‘
Cons: VMM
« Co-residency can be hard to achieve Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016

Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided
Example: RSA key retrieved in Amazon EC2 [INCI16]

Pros:

 Own virtualized OS. Access to timers or huge pages =

- If deduplication enabled, both attacks are applicable V::Am ‘
Cons: VMM
« Co-residency can be hard to achieve Hardware

* High amount of noise

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Hardware

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

WWW.YYYYy.com

Hardware

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

WWW.YYYYy.com

Hardware

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Example: Incognito browsing profiling [OREN15] WWW.YYYyYy.com

Hardware

[OREN15] Oren,Y., Kemerlis, V., Sethumadhavan, S, Keromytis, A. The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. ACM CCS 2015 13

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Example: Incognito browsing profiling [OREN15] WWW.YYYyYy.com
Pros:

Hardware

[OREN15] Oren,Y., Kemerlis, V., Sethumadhavan, S, Keromytis, A. The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. ACM CCS 2015 13

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Example: Incognito browsing profiling [OREN15] WWW.YYYyYy.com
Pros: I
. . > <—({)
* No need to find co-resident target =
JavaScript

Hardware

[OREN15] Oren,Y., Kemerlis, V., Sethumadhavan, S, Keromytis, A. The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. ACM CCS 2015 13

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Example: Incognito browsing profiling [OREN15] WWW.YYYyYy.com
Pros: I
. . > <—({)
* No need to find co-resident target =
JavaScript

o Attack executed in local machine

Hardware

[OREN15] Oren,Y., Kemerlis, V., Sethumadhavan, S, Keromytis, A. The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. ACM CCS 2015 13

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Example: Incognito browsing profiling [OREN15] WWW.YYYyYy.com
Pros: I
. . > <—({)
* No need to find co-resident target =
JavaScript

o Attack executed in local machine

cons:

Hardware

[OREN15] Oren,Y., Kemerlis, V., Sethumadhavan, S, Keromytis, A. The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. ACM CCS 2015 13

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Example: Incognito browsing profiling [OREN15] WWW.YYYyYy.com
Pros: I

* No need to find co-resident target

- =
—
JavaScript

o Attack executed in local machine

cons:

* Flush and Reload can not be applied

Hardware

[OREN15] Oren,Y., Kemerlis, V., Sethumadhavan, S, Keromytis, A. The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. ACM CCS 2015 13

Malicious Javascript Execution

Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Example: Incognito browsing profiling [OREN15] WWW.YYYyYy.com
Pros: I

* No need to find co-resident target

- =
—
JavaScript

o Attack executed in local machine

cons:

* Flush and Reload can not be applied

Hardware

* Fine grain timers hard to achieve

[OREN15] Oren,Y., Kemerlis, V., Sethumadhavan, S, Keromytis, A. The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. ACM CCS 2015 13

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

DRAM

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

=
\

‘ Non Encrypted .

DRAM

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Example: TrustZone AES key steal [BRM15] -

\

‘ Non Encrypted .

DRAM

[BRM15] Brumley,B. Cache Storage Attacks. CT-RSA 2015

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Example: TrustZone AES key steal [BRM15] -

Pros: \

‘ Non Encrypted .

DRAM

[BRM15] Brumley,B. Cache Storage Attacks. CT-RSA 2015

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Example: TrustZone AES key steal [BRM15] -

Pros: \

. . . Non Encrypted
* Higher resolution: access to OS fine H

grain resources (including scheduling) -

DRAM

[BRM15] Brumley,B. Cache Storage Attacks. CT-RSA 2015

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Example: TrustZone AES key steal [BRM15] -

Pros: \

. . . Non Encrypted
* Higher resolution: access to OS fine H

grain resources (including scheduling) -

DRAM

* No need to find co-resident target

[BRM15] Brumley,B. Cache Storage Attacks. CT-RSA 2015

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Example: TrustZone AES key steal [BRM15] -

Pros: \

. . . Non Encrypted
* Higher resolution: access to OS fine H

grain resources (including scheduling) -

DRAM

* No need to find co-resident target

cons:

[BRM15] Brumley,B. Cache Storage Attacks. CT-RSA 2015

Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Example: TrustZone AES key steal [BRM15] -

Pros: \

. . . Non Encrypted
* Higher resolution: access to OS fine H

grain resources (including scheduling)
* No need to find co-resident target -

DRAM

cons:

* Flush and Reload not applicable (deduplication disabled)

[BRM15] Brumley,B. Cache Storage Attacks. CT-RSA 2015

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

-
l'l w
|

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

A
l'l w
l
i

and>01D

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

-
l'l w
|

e

::om

Hardware

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

Example: AES key steal across apps [LIPP16]). - S
L
i

::om

Hardware

[LIPP16] Lipp,M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S. ARMageddon: Cache Attacks on Mobile Devices. USENIX 2016

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

Example: AES key steal across apps [LIPP16]). - S
Pros: "' "'

e

::om

Hardware

[LIPP16] Lipp,M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S. ARMageddon: Cache Attacks on Mobile Devices. USENIX 2016

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

Example: AES key steal across apps [LIPP16]). - S
Pros: "' "'

* Deduplication is generally used (e.g. Android)
i

a::om

Hardware

[LIPP16] Lipp,M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S. ARMageddon: Cache Attacks on Mobile Devices. USENIX 2016

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

Example: AES key steal across apps [LIPP16] amy
Pros: "' "'
* Deduplication is generally used (e.g. Android) l

i

« Easy deployment f
CIDQO|3

Hardware

[LIPP16] Lipp,M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S. ARMageddon: Cache Attacks on Mobile Devices. USENIX 2016

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

Example: AES key steal across apps [LIPP16]). - S
Pros: "' "'

* Deduplication is generally used (e.g. Android)

i
' sy deployment
_ N =I01D
cons: l
Hardware

[LIPP16] Lipp,M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S. ARMageddon: Cache Attacks on Mobile Devices. USENIX 2016

Malicious Smartphones Applications

Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

Example: AES key steal across apps [LIPP16]). - S
Pros: "' "'

* Deduplication is generally used (e.g. Android)

i
| ey deploymen
| AanNd01D
Cons: l
« Device dependent (e.g., non-inclusive cache) Hardware

[LIPP16] Lipp,M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S. ARMageddon: Cache Attacks on Mobile Devices. USENIX 2016

How can we mitigate cache
attacks?

Cache Leakage Free Code Design

Goals:

function modpow (a, b);
Input : base b, modulus N, secret
E = (Ek—ltﬁ].ﬁn)

Output: b* mod N
R0]=1: R[1] =b;
for i =k — 1 downto 0 do

R[0] x e; + R[1] x ¢; = R[0] * R[1] mod N

R[1] xe; + R[0] x é; =

R[1] * R[1] x ¢; + R[0] * R[0] * €; mod N;

th = e I

end
return R|[0]:

=1

Cache Leakage Free Code Design
Goals:

« Secret independent execution flow

function modpow (a, b);
Input : base b, modulus N, secret
E = (Ek—ltﬁ].ﬁn)

Output: b* mod N
R0]=1: R[1] =b;
for i =k — 1 downto 0 do

R[0] x e; + R[1] x ¢; = R[0] * R[1] mod N

R[1] xe; + R[0] x é; =

R[1] * R[1] x ¢; + R[0] * R[0] * €; mod N;

th = e I

end
return R|[0]:

=1

Cache Leakage Free Code Design

Goals:

« Secret independent execution flow

1 function modpow (a,b):
Input : base b, modulus N, secret
E = (Ek—ltﬁ].ﬁn)
Output: b* mod N
2 R0] =1: R[1] =b;
for i =k — 1 downto 0 do
R[0] x e; + R[1] x ¢; = R[0] * R[1] mod N
R[1] xe; + R[0] x é; =
R[1] * R[1] x ¢; + R[0] * R[0] * €; mod N;
end
7 return R|[0]:

Cache Leakage Free Code Design
Goals:
« Secret independent execution flow

« Secret independent memory accesses

1 function modpow (a,b):
Input : base b, modulus N, secret
E = (Ek—ltﬁ].ﬁn)

Output: b* mod N
R0]=1: R[1] =b;
for i =k — 1 downto 0 do

R[0] x e; + R[1] x ¢; = R[0] * R[1] mod N

R[1] xe; + R[0] x é; =

R[1] * R[1] x ¢; + R[0] * R[0] * €; mod N;

end
7 return R|[0]:

[]

Cache Leakage Free Code Design
Goals:
« Secret independent execution flow

« Secret independent memory accesses

1 function modpow (a,b):
Input : base b, modulus N, secret
E = (Ek—ltﬁ].ﬁn)
Output: b* mod N
2 R0] =1: R[1] =b;
for i =k — 1 downto 0 do
[R[0] x e; + R[1] * é;]= R[0] * R[1] mod N
R[1] xe; + R[0] x é; =
R[1] * R[1] x ¢; + R[0] * R[0] * €; mod N;

end
7 return R|[0]:

Avoiding Collisions in the LLC

Avoiding Collisions in the LLC

Approaches:

Avoiding Collisions in the LLC
Approaches:

« Page coloring

Avoiding Collisions in the LLC
Approaches:

« Page coloring

Page Coloring

Avoiding Collisions in the LLC

Approaches:

« Page coloring

Page Coloring

DRAM

EEEE
C 1}

Avoiding Collisions in the LLC
Approaches:

« Page coloring

Page Coloring

DRAM Users

PRIRIRE
I=iElislle

EEEE
C 1}

Avoiding Collisions in the LLC
Approaches:

« Page coloring

Page Coloring

DRAM Users LLC
T " 4 A
BN &
HOE -~ & {HE
BN - &
OnCN)— & il

Avoiding Collisions in the LLC
Approaches:

« Page coloring

* Intel CAT technology

Page Coloring

DRAM Users LLC
T " 4 A
BN &
HOE -~ & {HE
BN - &
OnCN)— & il

Avoiding Collisions in the LLC
Approaches:

« Page coloring

* Intel CAT technology

Page Coloring Intel CAT technology
DRAM Users LLC
(mom— & (U0
B0~ & {8
BOE - &
Onclj - & {ER

Avoiding Collisions in the LLC
Approaches:

« Page coloring

* Intel CAT technology

Page Coloring Intel CAT technology

DRAM Users LLC LLC

Cl)

S

EEEE
C 1}

PRIRIRE

I=li=lbEls

Avoiding Collisions in the LLC
Approaches:

« Page coloring

* Intel CAT technology

Page Coloring Intel CAT technology
DRAM Users LLC LLC
T) 4 A
BN & -
g8 2R
—>
CNCH) - & (i T

Lock f !

Avoiding Collisions in the LLC
Approaches:

« Page coloring

* Intel CAT technology

Page Coloring Intel CAT technology
DRAM Users LLC LLC
(r) 4 h
- &
g8 SRR
|:> |
Ontl - = gn .

Lock f !

Key Takeaways

Cache attacks are already practical!

Key Takeaways

Cache attacks are already practical!

laaS/PaasS, web browsers, smartphones.. What else?

Key Takeaways

Cache attacks are already practical!

laaS/PaasS, web browsers, smartphones.. What else?

Catching attention from many researchers: trend shows more practicality and
applicability expected

Key Takeaways

Cache attacks are already practical!
laaS/PaaS, web browsers, smartphones.. What else?

Catching attention from many researchers: trend shows more practicality and
applicability expected

CALL TO ACTION:

Key Takeaways

Cache attacks are already practical!
laaS/PaaS, web browsers, smartphones.. What else?

Catching attention from many researchers: trend shows more practicality and
applicability expected

CALL TO ACTION:

* For software designers: introduce cache leakage free code design habits!

Key Takeaways

Cache attacks are already practical!
laaS/PaaS, web browsers, smartphones.. What else?

Catching attention from many researchers: trend shows more practicality and
applicability expected

CALL TO ACTION:
* For software designers: introduce cache leakage free code design habits!

* For hypervisor/OS designers: software countermeasures and hardware
framework ready to use. Use it!

