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Security considerations and disallowing inter-Virtual Machine
Transparent Page Sharing (2080735)

This article acknowledges the recent academic research that leverages Transparent Page Sharing (TPS) to gain unauthorized access to data under
certain highly controlled conditions and documents Viware's precautionary measure of restricting TPS to incividual virtual machines by default in
upcoming ESXi releases. At this time, Viiware believes that the published information disclosure due to TPS between virtual machines is impractical in a
real world deployment.




The Flush and Reload Attack

The first example: Flush and Reload

Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!
Cache




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!

Cache

Attacker flushes

FLUSH




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache

Victim access/not access




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!
Cache

Attacker flushes

Victim access/not access

ACCESS

©




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache

Victim access/not access




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)
Deduplication poses big threats!

Attacker flushes Cache

Victim access/not access

Attacker re-accesses




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!

Cache

Attacker flushes
Victim access/not access

Attacker re-accesses

RELOAD

i




The Flush and Reload Attack

The first example: Flush and Reload
Assumptions: shared memory (e.g. KSM)

Deduplication poses big threats!

Cache

Attacker flushes

0%
[—|nstruction in cache
03k m— |y struction in mernary
028+
£ 02y
E
[2]
8
g 01af
01k -
nos I RELOAD
D L L k. |
1] a0 100 140 200 240 300 30 400 450 500
Hardware cycles




The Prime and Probe Attack

The second example: Prime and Probe

No special assumptions

Cache




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

PRIME




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

PRIME




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

Victim accesses/not accesses




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

ACCESS

@
I

Victim accesses/not accesses




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

Victim accesses/not accesses

ACCESS

©




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

Victim accesses/not accesses




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes
Cache

Victim accesses/not accesses

Attacker re-accesses




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

Victim accesses/not accesses

Attacker re-accesses




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

Victim accesses/not accesses

Attacker re-accesses

PROBE




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

Victim accesses/not accesses
Attacker re-accesses

Fast time: no access

PROBE




The Prime and Probe Attack

The second example: Prime and Probe
No special assumptions

Attacker Primes

Cache

Victim accesses/not accesses
Attacker re-accesses
Fast time: no access

Slow time: access

PROBE




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a,b):
Input : base b. modulus N, secret
E = (ex—1,...,€1,€0)
Output: b mod N

2 Ry =1; Rl =

3 fori =k —1 downto 0 do

4 if ¢;==0 then

3 Ry = Ry * Ry mod N;
6 Ry = Ry x Ry mod N;
7 end

8 else

9 RO=R0*R1 mod N;
10 Ry =R, * Ry mod N;
1 end

12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a,b):
Input : base b. modulus N, secret
E = (ek—1,...,€1,€0)
Output: b mod N

2 Ry =1; Rl =

3 for i =k —1 downto 0 do

s |L_if e;==0 then|

3 Ry = Ry * Ry mod N;
6 Ry = Ry x Ry mod N;
7 end

8 || else |

9 R():R()*Rl mod N;
10 Ry =R, * Ry mod N;
1 end

12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a,b):
Input : base b. modulus N, secret

E = (ek-1,...,€1,€0) Flush and Reload
Output: b mod N
2 Ry =1; Rl =
3 for i =k —1 downto 0 do
4 || if e;==0 then| .
s Ry, = Ro x R, mod N: Physical address
6 Ry = Ry * Ry mod N; W= P=0x7fffc480
7 end
8 || else |
9 RO=R0*R1 mod N;
10 Ry =R, * Ry mod N;
1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Re=1oRi= Cache
3 for i =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
7 end
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Re=1oRi= Cache
3 for i =k —1 downto 0 do
4 || if e;==0 then| .
s Ry, = Ro x R, mod N: Physical address
6 Ry = Ry * Ry mod N; W= P=0x7fffc480
7 end
8 || else |
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;

1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Re=1oRi= Cache
3 for i =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
7 end
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Bi=taBi=b Cache
3 for i =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
| oyt v, e o |
7 end
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (€k—1, .-, €1, €0) Flush and Reload
Output: ™ mod N
2 Bi=taBi=b Cache
3 for i =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
N e
7 end
9 R():R()*Rl mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;’_= (ex—1,--»€1,€0) Flush and Reload
Output: ™ mod N
2 Ro=1: Ry = b: Cache
3 for i =k —1 downto 0 do
4 || if e;==0 then| .
s Ry, = Ro x R, mod N: Physical address
6 Ry = Ry * Ry mod N; W= P=0x7fffc480
7 end
8 || else |
9 R():R()*Rl mod N;
10 Ry =R, * Ry mod N:

1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

y 5_= (eg-\n,---,el-eo) Prime and Probe
utput: b mod N

) 1?021; Ry = b: Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end

9 R():R()*Rl mod N;

10 Ry =Ry xRy mod N;

1 end

12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

B = (e 1517854 B0) Prime and Probe
Output: ™ mod N
2 Bi=taBi=b Cache
3 fori =k —1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
7 end l
9 Ro = Ry x Ry mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

E;_= (ek—1,-.-,€1,€0) Prime and Probe
Output: ™ mod N
2 Bai=1o By=b: Cache
3 fori=Fk—1 downto 0 do
s Ry, = Ro x R, mod N: Physical address
7 end l
9 Ro = Ry x Ry mod N;
10 Ry =Ry xRy mod N;
1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

2 Ro=1; Ry = b; Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N;

1 end

12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

» Ry=1; Ry = b: Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

s |Lelse | _ SET=1554 mmp

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N:

1 end
12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

2 Ro=1; Ry = b; Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N;

1 end

12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

2 Ro=1; Ry = b; Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N;

1 end

12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

2 Ro=1; Ry = b; Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N;

1 end

12 end

13 return Ry:




How to Retrieve Information?

Montgomery ladder RSA

1 function modpow (a.b):
Input : base b. modulus N, secret

: 5_= ((’(;'—\le--uehf’ﬂ) Prime and Probe
utput: b mod N

» Ry=1; Ry = b: Cache

3 for i =k —1 downto 0 do

s Ry, = Ro x R, mod N: Physical address

7 end l

s |Lelse | _ SET=1554 mmp

9 Ro = Ry x Ry mod N;

10 Ry =R, * Ry mod N:

1 end
12 end

13 return Ry:




Where are LLC attacks a threat?




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Victim

VM

?

VMM

Hardware




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]

Victim ‘
VM

VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]
Pros:

Victim ‘
VM

VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]
Pros:

Victim

 Own virtualized OS. Access to timers or huge pages ‘

VM

VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]
Pros:

 Own virtualized OS. Access to timers or huge pages =
 If deduplication enabled, both attacks are applicable ‘

VM

VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided

Example: RSA key retrieved in Amazon EC2 [INCI16]
Pros:

Victim

 Own virtualized OS. Access to timers or huge pages ‘

 If deduplication enabled, both attacks are applicable

VM

cons: VMM

Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided
Example: RSA key retrieved in Amazon EC2 [INCI16]

Pros:

 Own virtualized OS. Access to timers or huge pages =

- If deduplication enabled, both attacks are applicable V::Am ‘
Cons: VMM
« Co-residency can be hard to achieve Hardware

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016




Commercial laaS/PaaS Cloud Infrastructures
VMs sharing underlying hardware

Hardware isolation is usually not provided
Example: RSA key retrieved in Amazon EC2 [INCI16]

Pros:

 Own virtualized OS. Access to timers or huge pages =

- If deduplication enabled, both attacks are applicable V::Am ‘
Cons: VMM
« Co-residency can be hard to achieve Hardware

* High amount of noise

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016
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Attacker introduces cache attack containing javascript code
Into target website

Victim access the target website, and her browser executes
the javascript code in the local machines

Example: Incognito browsing profiling [OREN15] WWW.YYYyYy.com
Pros: I

* No need to find co-resident target

- =
—
JavaScript

o Attack executed in local machine

cons:

* Flush and Reload can not be applied

Hardware

* Fine grain timers hard to achieve

[OREN15] Oren,Y., Kemerlis, V., Sethumadhavan, S, Keromytis, A. The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. ACM CCS 2015 13
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Trusted Execution Environments

Trusted execution environments designed to achieve
Isolation from untrusted processes

But both trusted and untrusted environments access same
hardware caches!

Example: TrustZone AES key steal [BRM15] -

Pros: \

. . . Non Encrypted
* Higher resolution: access to OS fine H

grain resources (including scheduling)
* No need to find co-resident target -

DRAM

cons:

* Flush and Reload not applicable (deduplication disabled)

[BRM15] Brumley,B. Cache Storage Attacks. CT-RSA 2015
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Smartphone applications are properly isolated by the OS in
the software side

However, as with TEESs, all applications utilize the hardware
caches

Example: AES key steal across apps [LIPP16] ). - S
Pros: "' "'

* Deduplication is generally used (e.g. Android)

i
| ey deploymen
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« Device dependent (e.g., non-inclusive cache) Hardware

[LIPP16] Lipp,M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S. ARMageddon: Cache Attacks on Mobile Devices. USENIX 2016
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Cache Leakage Free Code Design
Goals:
« Secret independent execution flow

« Secret independent memory accesses

1 function modpow (a,b):
Input : base b, modulus N, secret
E = (Ek—lt ....ﬁ].ﬁn)
Output: b* mod N
2 R0] =1: R[1] =b;
for i =k — 1 downto 0 do
[R[0] x e; + R[1] * é;]= R[0] * R[1] mod N
R[1] xe; + R[0] x é; =
R[1] * R[1] x ¢; + R[0] * R[0] * €; mod N;

end
7 return R|[0]:
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Key Takeaways

Cache attacks are already practical!
laaS/PaaS, web browsers, smartphones.. What else?

Catching attention from many researchers: trend shows more practicality and
applicability expected

CALL TO ACTION:
* For software designers: introduce cache leakage free code design habits!

* For hypervisor/OS designers: software countermeasures and hardware
framework ready to use. Use it!



