FeatureSmith
Learning to Detect Malware by Mining the Security Literature
Security and Machine Learning

Used for detecting spam, phishing, malware, network attacks, malicious domains, vulnerability exploits in the wild, compromised Web sites, ...

What does it mean for two samples to be similar?
Features in Machine Learning Models

• How should we compare samples?

 - **Spam**: keywords, features from email header, ...

 - **AI bots**: vocabulary, sentence structure, ...

It takes one to know one?

Feature engineering
Running Example: Android Malware Detection

• How should we compare samples?
 – Permissions
 • Protect sensitive data and functionality
 • Does not work for privilege escalation
 – API method calls
 • Reveal malware behaviors

• Feature engineering
 – Use domain knowledge to identify useful features
 – Must consider threat semantics
The Security Body of Knowledge

• Growing volume of papers, industry reports, blogs, ...

Difficult to assimilate all relevant knowledge
Dilemma

Growing body of knowledge

Need for good features

Can we engineer features automatically, by mining security papers?
Can we create an artificial intelligence that helps us build other intelligent systems?
Security Threats in Natural Language

- “The Zsone malware is designed to send SMS messages to certain premium numbers”*

* Zhou et al. ‘Hey, you, get off of my market: Detecting malicious apps in official and alternative android markets,’ NDSS 2012.
Security Threats in Natural Language

Evasion, privilege escalation

- “GingerMaster [...] is often bundled with benign applications and tries to gain root access” *

Plato’s Allegory of the Cave

Illustration by John D’Alembert
Domain Knowledge
Challenge #1

Understanding the **semantic meaning**

– Based on common sense, knowledge of security domain
Challenge #2

Attacker behaviors keep evolving

- Security arms race
- Must discover open-ended behaviors

IEEE Security and Privacy Symposium
Intuition for Automatic Feature Engineering

Malware behaviors*

Access sensitive data

Communicate over network

Execute external commands

Features
(suspicious API calls)

getDeviceId

getSubscriberId

execHttpRequest

setWifiEnabled

Runtime.exec

* Arp et al. NDSS’14
Behavior Extraction

- Behavior
 - Description of malware activity
 - Short phrase
 - <subject?, verb, object?>
 - Parse grammatical structure of sentences

"The Zsone malware is designed to send SMS messages to certain premium numbers"*

- Zsone malware send SMS messages
- designed Zsone malware
- Zsone malware send to certain premium numbers

* Zhou et al. NDSS’12
Behavior Understanding

• Link behaviors to concrete features

“API calls for accessing sensitive data, such as getDeviceId()”*

* Arp et al. NDSS’14
Behavior Understanding

• Link behaviors to malware

* Zsone malware is designed to send SMS messages to premium numbers

* Zhou et al. NDSS’12
Semantic Network

• Nodes: security concepts
 – Malware families: named entities
 – Concrete features: named entities
 – Behaviors: open ended

• Edges: semantically related concepts
 – Weights based on distance and co-occurrence
Semantic Network Example

<table>
<thead>
<tr>
<th>Malware</th>
<th>Behavior</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zsone</td>
<td>Send SMS message</td>
<td>SEND_SMS 0.25</td>
</tr>
<tr>
<td></td>
<td>Identify execution path</td>
<td>sendTextMessage 0.75</td>
</tr>
<tr>
<td>Zitmo</td>
<td>Extract sender phone number</td>
<td>Thread.start</td>
</tr>
<tr>
<td></td>
<td>Open manifest file</td>
<td>createFromPdu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>openXmlResourceParser</td>
</tr>
</tbody>
</table>
How Well Does This Work?

Automatic feature engineering

• FeatureSmith
 – Analyzed 1,068 security papers
 – Automatically engineered 195 features relevant to Android malware
 • Out of 383 found in the papers

Manual feature engineering

• Drebin*
 – State-of-the-art Android malware detector
 – Uses 545,334 features
 • Including 315 suspicious API calls, manually curated

* Arp et al. NDSS’14
Auto vs. Manual: Experiment

<table>
<thead>
<tr>
<th>Automatic</th>
<th>Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Features engineered by FeatureSmith</td>
<td>• Features used in Drebin</td>
</tr>
</tbody>
</table>

• Same classification algorithm
• Same corpus of benign and malicious apps
• Same feature types
• Experiment: **Compare the two feature sets**
Auto vs. Manual: Features

• FeatureSmith discovered new features
 – getSimOperatorName
 – getNetworkOperatorName
 – getCountry

• Often used by malware
 – Help detect Gappusin family (not detected by Drebin)

Human data scientists cannot assimilate all relevant knowledge
Auto vs. Manual: Detection Performance
Auto vs. Manual: Detection Performance

![Graph showing detection performance comparison between auto and manual methods.](image-url)
Auto vs. Manual: Detection Performance

Parity with manual features at 1% false positives
Knowledge Evolution

Effectiveness of features discovered in different years

![Graph showing the effectiveness of features discovered in different years from 2012 to 2015 with varying numbers of features.](image)
Alternatives

• Feature selection
 – Must enumerate all possible features in advance (e.g. all Android permissions)

• Representation learning
 – Discovers useful features (representations) from raw data (e.g. using a neural network)

• Disadvantages
 – Data-driven: may reflect biases in the ground truth
 – No automatic discovery of threat semantics
In A Nutshell

• Automatic feature engineering
 – Discover **semantically meaningful features**
 • Some missing from manually curated set
 – Performance **on par** with state-of-the-art malware detector
 – Many potential applications
 • Security: AI bots, threat intelligence, intrusion detection, ...
 • Other fields: biomedical research, IBM’s Watson Q&A system

• Complements human-driven feature engineering
 – **Human** data scientists have intuition
 – **FeatureSmith** can reason over **entire body of knowledge**

• Paper and data: http://featuresmith.org
Automated systems can understand the semantics of security concepts

This is a powerful tool for creating attacks and defenses
Thank you!

Tudor Dumitraş

@tudor_dumitras
http://featuresmith.org

Acknowledgments:
• Work with Ziyun Zhu
• Robot cartoons by Katy Tresedder