
Primary Data Deduplication – Large

Scale Study and System Design

A. El-Shimi, R. Kalach, A. Kumar, J. Li, A. Oltean, S. Sengupta

Microsoft Corporation, Redmond (USA)

Primary Data Deduplication for

File-based Storage

 Relatively recent interest vs. backup data dedup

 Driving forces

 50% year-over-year growth in file based data

 #1 technology feature when choosing a storage solution

 Technology challenges

 Continue to serve “primary” workload from same copy of data

 Balance resource consumption (CPU/memory/disk I/O), dedup

space savings, and dedup throughput

Slide 3

Key Requirements for

Primary Data Deduplication

 Optimize for unique data

 More than 50% of data could be unique (vs. 90+% duplication rates

in backup data)

 Primary workload friendly

 Maintain efficient access to data (both sequential and random I/O)

 Deduplication cannot assume dedicated resources and must “yield”

to primary workload

 Broadly used platform

 Must run well on a low-end server

 Huge variability in workloads and hardware platforms

Slide 4

Key Design Decisions

 Post-processing deduplication

 Preserve latency/throughput of primary data access

 Flexibility in scheduling dedup as background job on cold data

 Deduplication granularity and data chunking

 Chunk-level: variable sized chunking, large chunk size (~80KB)

 Modifications to Rabin fingerprint based chunking to achieve more

uniform chunk size distribution

 Deduplication resource usage scaling slowly with data size

 Reduced chunk metadata

 RAM frugal chunk hash index

 Data partitioning

Slide 5

Large Scale Study of Primary Datasets

 Used to drive key design

decisions

 About 7TB of data spread

across 15 globally distributed

servers in a large enterprise

 Data crawled and chunked at

different average chunk sizes

 Using Rabin fingerprint based

variable sized chunker

 SHA-1 hash, size, compressed

size, offset in file, file information

logged for each chunk

Slide 6

Key Design Decisions

 Post-processing deduplication

 Preserve latency/throughput of primary data access

 Flexibility in scheduling dedup as background job on cold data

 Deduplication granularity and data chunking

 Chunk-level: variable sized chunking, large chunk size (~80KB)

 Modifications to Rabin fingerprint based chunking to achieve more

uniform chunk size distribution

 Deduplication resource usage scaling slowly with data size

 Reduced chunk metadata

 RAM frugal chunk hash index

 Data partitioning

Slide 7

Average Chunk Size

 Compression compensates

for savings decrease with

higher chunk size

 Compression is more efficient

on larger chunks

 Use larger chunk size of

~64KB

 Without sacrificing dedup

savings

 Reduce chunk metadata in

the system

Slide 9

Dedup savings loss

w/o compression

Dedup savings preserved

w/ compression

GFS-US dataset

Chunk Reference Count

 Majority of duplicate bytes reside in middle portion of distribution

 Not sufficient to dedup just high ref count chunks

 System needs to deduplicate all chunks that appear more than once

 Implications on the chunk hash index design

Slide 10

GFS-Japan-1 dataset

Basic version of fingerprint based

chunking

 Skewed chunk size

distribution

 Small chunk size =>

increase in chunk

metadata in the system

 Large chunks => reduced

dedup savings, benefit of

caching

Slide 11

x

x

F
re

q
u

en
cy

 d
is

tr
ib

u
ti

o
n

Chunk size min max

 Forced chunk boundaries

 Forced boundary at max chunk size is content independent, hence

may reduce dedup savings

Regression Chunking Algorithm

 Goal 1: To obtain uniform chunk size distribution

 Goal 2: Reduce forced chunk boundaries at max size

 Basic idea

 When max chunk size is reached, relax match condition to some

suffix of bit pattern P

 Match |P| - i bits of P, with decreasing priority for i=0,1, …, k

 Reduces probability of forced boundary at max size

 2x10-3 for k=1, 10-14 for k=4

Slide 12

Regression Chunking Algorithm contd.

 Maintains chunking throughput performance

 Core matching loop checks against smallest prefix, break out only if

match occurs

 Single pass over data: remember match position for each relaxed

suffix match

Slide 13

Regression Chunking Performance

Slide 14

Uniform chunk size distribution

GFS-US dataset

Dedup savings improvement

Key Design Decisions

 Post-processing deduplication

 Preserve latency/throughput of primary data access

 Flexibility in scheduling dedup as background job on cold data

 Deduplication granularity and data chunking

 Chunk-level: variable sized chunking, large chunk size (~80KB)

 Modifications to Rabin fingerprint based chunking to achieve more

uniform chunk size distribution

 Deduplication resource usage scaling slowly with data size

 Reduced chunk metadata

 RAM frugal chunk hash index

 Data partitioning

Slide 15

Chunk Indexing

 Log-structured organization

 Chunk metadata organized in

log-structured manner on disk

 Insertions aggregated in write

buffer in RAM and appended to

log in single I/O

 Low RAM footprint index

 Specialized hash table using

variant of cuckoo hashing

 2-byte signature, 4-byte pointer

per entry => 6-bytes of RAM

per indexed chunk

Slide 16

Chunk Indexing contd.

 Prefetch Cache

 Prefetch chunk mappings for next 100-1000 chunks in same I/O

 Exploit sequential predictability of chunk hash lookups

 Locality expected to be less than in backup workloads

 Prefetch cache sized at 100,000 entries (5MB of RAM)

 About 1% of index lookups hitting disk (on all datasets evaluated)

 Hash table acts as a bloom filter on new chunk lookups

Slide 17

Data Partitioning and Reconciliation

 Two-phase deduplication

 Divide the data into disjoint partitions, and perform deduplication

within each partition

 Reconcile duplicates across partitions

 Reconciliation algorithm

 Iterative procedure

 Grow the set of reconciled partitions by considering some number

of unreconciled partitions at a time

 Reconciliation Strategy

 Selective reconciliation

 Delayed reconciliation

Slide 18

Reconciliation of Data Partitions

Slide 19

Reconciled partitions Unreconciled partitions (k)

(indexed in RAM)

Compare unreconciled partitions with

each partition in reconciled set

k = #unreconciled partitions considered per iteration; provides

trade-off between memory usage and reconciliation speed

Efficient partitioning strategies

 Partition data and dedup within

each partition

 How close is dedup savings within

partitions to that of global dedup?

 Partitioning by file type

 Dedup savings almost as good as

with global dedup

Slide 20

 Partitioning by file path

 Partition by directory sub-trees (each partition ≤ 10% of total bytes)

 Not as effective as partitioning by file type for preserving dedup

savings

 Partitioning by system/volume

Dedup amenable to

partitioned processing

System Overview

 Data path

 Dedup filter

 Chunk cache

 File stub tx update

 Deduplication pipeline

 Data chunking

 Index lookups + insertions

 Chunk Store insertions

 Background jobs

 Garbage collection (in Chunk Store)

 Data scrubbing

 Slide 21

Stream

Map

Data

Chunk

Phase I – Identify the duplicate data

1. Scan files according to policy

2. Chunk files intelligently to maximize recurring chunks

3. Identify common data chunks

Phase II – Optimize the target files

4. Single-instance data chunks in file stream order

5. Create stream metadata

6. Truncate original file data stream

Deduplication and on-disk structures

PA

GE

22

• Reduce latency for small

writes to large files (e.g. OS

image patching scenario)

• Recall granularity grows with

file size

• Incremental Dedup will later

optimize the new data

• GC cleans up unreferenced

chunks (chunk “D” in

example)

Post Write File Layout

Pre write File Layout

Write path to Optimized File

1

2

3

Write flow

Perf. Improvement: Chunk Compression

 Compression/decompression can

have a significant perf impact

 Compression savings is skewed

 50% of unique chunks responsible

for 86% of compression savings

 31% of chunks do not compress at

all

 Solution: selective compression

Slide 24

GFS-US dataset

 Reduces cost of compression for large fraction of chunks

 While preserving most of compression savings

 Reduces decompression costs (reduce CPU pressure during heavy reads)

 Also: use a cache for decompressed data (important for hotspots)

 Heuristics for determining which chunks should not be compressed

Performance Evaluation – Throughput

 Quad-core Intel Xeon 2.27GHz machine, 12GB RAM

 Four scenarios, from combinations of

 Index type (pure in-memory vs. memory/disk)

 Data partitioning (off or on)

 Deduplication throughput

 25-30 MB/s (single thread performance)

 Only about 10% decrease from baseline to least memory case

 Three orders of magnitude higher than typical data ingestion rates

of 0.03 MB/sec (Leung, et al.)

 Slide 25

GFS-US dataset

Performance Evaluation – Resource Usage

 RAM frugality

 Index memory usage

reduction of 24x vs. baseline

 Low CPU utilization

 30-40% per core

 Enough room available for

serving primary workload in multi-core modern file servers

 Low disk usage

 Median disk queue depth is zero in all cases

 At 75-th percentile, increase by 2-3; impact of index lookups going

to disk and/or reconciliation

Slide 26

Performance Evaluation – Parallelizability

 Parallel processing across datasets and CPU cores/disks

 Disk diverse datasets

 One session per volume in current implementation

 One CPU core allocated per dedup session

 One process and thread per deduplication session

 No cross-dependencies in deduplication sessions (each session uses a

separate index)

 Aggregate dedup throughput scales as expected with number of cores

(provided sufficient RAM is available)

 Workload scheduler

 Assigns jobs (deduplication, GC, scrubbing) with CPU cores

 Allocates memory per job

 Keeps track of job activity (cancel jobs on memory or CPU pressure)

Slide 27

Summary

 Large scale study of primary data dedup

 7TB of data across 15 globally distributed servers in a large enterprise

 Primary data deduplication in Windows Server 2012

 Design decisions driven by data analysis findings

 Primary workload friendly

 Scale deduplication processing resource usage with data size

 CPU/memory/disk IO

 Data chunking and compression

 Chunk indexing

 Data partitioning and reconciliation

 Primary data serving, reliability, and resiliency aspects not

covered in this paper

