
Primary Data Deduplication – Large 

Scale Study and System Design 

A. El-Shimi, R. Kalach, A. Kumar, J. Li, A. Oltean, S. Sengupta 

 

Microsoft Corporation, Redmond (USA) 



Primary Data Deduplication for           

File-based Storage 

 Relatively recent interest vs. backup data dedup 

 Driving forces 

 50% year-over-year growth in file based data 

 #1 technology feature when choosing a storage solution 

 Technology challenges 

 Continue to serve “primary” workload from same copy of data 

 Balance resource consumption (CPU/memory/disk I/O), dedup 

space savings, and dedup throughput  
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Key Requirements for  

Primary Data Deduplication 

 Optimize for unique data 

 More than 50% of data could be unique (vs. 90+% duplication rates 

in backup data) 

 Primary workload friendly 

 Maintain efficient access to data (both sequential and random I/O) 

 Deduplication cannot assume dedicated resources and must “yield” 

to primary workload  

 Broadly used platform 

 Must run well on a low-end server 

 Huge variability in workloads and hardware platforms 
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Key Design Decisions 

 Post-processing deduplication 

 Preserve latency/throughput of primary data access 

 Flexibility in scheduling dedup as background job on cold data 

 Deduplication granularity and data chunking 

 Chunk-level: variable sized chunking, large chunk size (~80KB) 

 Modifications to Rabin fingerprint based chunking to achieve more 

uniform chunk size distribution 

 Deduplication resource usage scaling slowly with data size 

 Reduced chunk metadata 

 RAM frugal chunk hash index 

 Data partitioning 
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Large Scale Study of Primary Datasets 

 Used to drive key design 

decisions 

 About 7TB of data spread 

across 15 globally distributed 

servers in a large enterprise 

 Data crawled and chunked at 

different average chunk sizes 

 Using Rabin fingerprint based 

variable sized chunker 

 SHA-1 hash, size, compressed 

size, offset in file, file information 

logged for each chunk 
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Average Chunk Size 

 Compression compensates 

for savings decrease with 

higher chunk size 

 Compression is more efficient 

on larger chunks 

 Use larger chunk size of 

~64KB 

 Without sacrificing dedup 

savings 

 Reduce chunk metadata in 

the system 
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Dedup savings loss 

w/o compression 

Dedup savings preserved 

w/ compression 

GFS-US dataset 



Chunk Reference Count 

 Majority of duplicate bytes reside in middle portion of distribution 

 Not sufficient to dedup just high ref count chunks 

 System needs to deduplicate all chunks that appear more than once 

 Implications on the chunk hash index design 
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GFS-Japan-1 dataset 



Basic version of fingerprint based 

chunking 

 Skewed chunk size 

distribution 

 Small chunk size => 

increase in chunk 

metadata in the system 

 Large chunks => reduced 

dedup savings, benefit of 

caching 
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Chunk size min max 

 Forced chunk boundaries 

 Forced boundary at max chunk size is content independent, hence 

may reduce dedup savings 

 

 



Regression Chunking Algorithm 

 Goal 1: To obtain uniform chunk size distribution 

 Goal 2: Reduce forced chunk boundaries at max size 

 Basic idea 

 When max chunk size is reached, relax match condition to some 

suffix of bit pattern P 

 Match |P| - i bits of P, with decreasing priority for i=0,1, …, k 

 Reduces probability of forced boundary at max size 

 2x10-3 for k=1, 10-14 for k=4   
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Regression Chunking Algorithm contd. 

 Maintains chunking throughput performance 

 Core matching loop checks against smallest prefix, break out only if 

match occurs 

 Single pass over data: remember match position for each relaxed 

suffix match 
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Regression Chunking Performance 

Slide 14  

Uniform chunk size distribution 

GFS-US dataset 

Dedup savings improvement 
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Chunk Indexing 

 Log-structured organization 

 Chunk metadata organized in 

log-structured manner on disk 

 Insertions aggregated in write 

buffer in RAM and appended to 

log in single I/O 

 Low RAM footprint index 

 Specialized hash table using 

variant of cuckoo hashing 

 2-byte signature, 4-byte pointer 

per entry => 6-bytes of RAM 

per indexed chunk 
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Chunk Indexing contd. 

 Prefetch Cache 

 Prefetch chunk mappings for next 100-1000 chunks in same I/O 

 Exploit sequential predictability of chunk hash lookups 

 Locality expected to be less than in backup workloads 

 Prefetch cache sized at 100,000 entries (5MB of RAM) 

 About 1% of index lookups hitting disk (on all datasets evaluated) 

 Hash table acts as a bloom filter on new chunk lookups 
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Data Partitioning and Reconciliation 

 Two-phase deduplication 

 Divide the data into disjoint partitions, and perform deduplication 

within each partition 

 Reconcile duplicates across partitions 

 Reconciliation algorithm 

 Iterative procedure 

 Grow the set of reconciled partitions by considering some number 

of unreconciled partitions at a time 

 Reconciliation Strategy 

 Selective reconciliation 

 Delayed reconciliation 

Slide 18  



Reconciliation of Data Partitions 
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Reconciled partitions Unreconciled partitions (k) 

(indexed in RAM) 

Compare unreconciled partitions with 

each partition in reconciled set 

k = #unreconciled partitions considered per iteration; provides 

trade-off between memory usage and reconciliation speed 



Efficient partitioning strategies 

 Partition data and dedup within 

each partition 

 How close is dedup savings within 

partitions to that of global dedup?  

 Partitioning by file type 

 Dedup savings almost as good as 

with global dedup 
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 Partitioning by file path 

 Partition by directory sub-trees (each partition ≤ 10% of total bytes) 

 Not as effective as partitioning by file type for preserving dedup 

savings 

 Partitioning by system/volume 

 

Dedup amenable to 

partitioned processing 



System Overview 

 Data path 

 Dedup filter  

 Chunk cache 

 File stub tx update 

 Deduplication pipeline 

 Data chunking 

 Index lookups + insertions 

 Chunk Store insertions 

 Background jobs 

 Garbage collection (in Chunk Store) 

 Data scrubbing 

 Slide 21  



Stream 

Map 

Data 

Chunk 

Phase I – Identify the duplicate data 

1. Scan files according to policy 

2. Chunk files intelligently to maximize recurring chunks 

3. Identify common data chunks 

Phase II – Optimize the target files 

4. Single-instance data chunks in file stream order  

5. Create stream metadata 

6. Truncate original file data stream 

Deduplication and on-disk structures 
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• Reduce latency for small 

writes to large files (e.g. OS 

image patching scenario) 

• Recall granularity grows with 

file size 

• Incremental Dedup will later 

optimize the new data 

• GC cleans up unreferenced 

chunks (chunk “D” in 

example) 

Post Write File Layout 

Pre write File Layout 

Write path to Optimized File 

1 

2 

3 

Write flow 



Perf. Improvement: Chunk Compression 

 Compression/decompression can 

have a significant perf impact 

 Compression savings is skewed 

 50% of unique chunks responsible 

for 86% of compression savings 

 31% of chunks do not compress at 

all 

 Solution: selective compression 
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GFS-US dataset 

 Reduces cost of compression for large fraction of chunks 

 While preserving most of compression savings 

 Reduces decompression costs (reduce CPU pressure during heavy reads) 

 Also: use a cache for decompressed data (important for hotspots) 

 Heuristics for determining which chunks should not be compressed 



Performance Evaluation – Throughput 

 Quad-core Intel Xeon 2.27GHz machine, 12GB RAM 

 Four scenarios, from combinations of 

 Index type (pure in-memory vs. memory/disk) 

 Data partitioning (off or on) 

 

 

 Deduplication throughput 

 25-30 MB/s (single thread performance) 

 Only about 10% decrease from baseline to least memory case 

 Three orders of magnitude higher than typical data ingestion rates 

of 0.03 MB/sec (Leung, et al.)  
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GFS-US dataset 



Performance Evaluation – Resource Usage 

 RAM frugality 

 Index memory usage                                                                         

reduction of 24x vs. baseline 

 Low CPU utilization 

 30-40% per core 

 Enough room available for                                                               

serving primary workload in multi-core modern file servers 

 Low disk usage 

 Median disk queue depth is zero in all cases 

 At 75-th percentile, increase by 2-3; impact of index lookups going 

to disk and/or reconciliation 
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Performance Evaluation – Parallelizability 

 Parallel processing across datasets and CPU cores/disks 

 Disk diverse datasets 

 One session per volume in current implementation 

 One CPU core allocated per dedup session 

 One process and thread per deduplication session 

 No cross-dependencies in deduplication sessions (each session uses a 

separate index) 

 Aggregate dedup throughput scales as expected with number of cores 

(provided sufficient RAM is available) 

 Workload scheduler 

 Assigns jobs (deduplication, GC, scrubbing) with CPU cores 

 Allocates memory per job 

 Keeps track of job activity (cancel jobs on memory or CPU pressure) 
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Summary 

 Large scale study of primary data dedup 

 7TB of data across 15 globally distributed servers in a large enterprise 

 Primary data deduplication in Windows Server 2012 

 Design decisions driven by data analysis findings 

 Primary workload friendly 

 Scale deduplication processing resource usage with data size 

 CPU/memory/disk IO 

 Data chunking and compression 

 Chunk indexing 

 Data partitioning and reconciliation 

 Primary data serving, reliability, and resiliency aspects not 

covered in this paper 

 


