N ‘? L] <t
¥ 5

Microsoft

SRl e Research
-2 N ara R AR Y

Primary Data Deduplication — Large
Scale Study and System Design

A. EI-Shimi, R. Kalach, A. Kumar, J. Li, A. Oltean, S. Sengupta

Microsoft Corporation, Redmond (USA)

Primary Data Deduplication for

< Relatively recent interest vs. backup data dedup
< Driving forces

s 50% year-over-year growth in file based data

= #1 technology feature when choosing a storage solution
< Technology challenges

= Continue to serve “primary” workload from same copy of data

= Balance resource consumption (CPU/memory/disk 1/0), dedup
space savings, and dedup throughput

Slide 3

Key Requirements for

< Optimize for unique data

= More than 50% of data could be unique (vs. 90+% duplication rates
In backup data)

< Primary workload friendly

= Maintain efficient access to data (both sequential and random I/O)

= Deduplication cannot assume dedicated resources and must “yield”
to primary workload

< Broadly used platform

= Must run well on a low-end server
= Huge variablility in workloads and hardware platforms

Slide 4

Key Design Decisions

< Post-processing deduplication

= Preserve latency/throughput of primary data access

= Flexibility in scheduling dedup as background job on cold data
< Deduplication granularity and data chunking

= Chunk-level: variable sized chunking, large chunk size (~80KB)

= Modifications to Rabin fingerprint based chunking to achieve more
uniform chunk size distribution

< Deduplication resource usage scaling slowly with data size

= Reduced chunk metadata
= RAM frugal chunk hash index
= Data partitioning

Slide 5

Large Scale Study of Primary Datasets

Used to drive key design
decisions

About 7TB of data spread

across 15 globally distributed

servers in a large enterprise

Data crawled and chunked at

different average chunk sizes

Workload Srvrs | Users | Total | Locations
Data

Home Folders 8 1867 | 2.4TB | US, Dublin,

(HF) Amster-
dam, Japan

Group File Shares 3 * 3TB US, Japan

(GFS)

Sharepoint 1 500 | 288GB| US

Software Deploy- 1 T 399GB| US

ment Shares (SDS)

Virtualization 2 + 791GB| US

Libraries (VL)

Total 15 6.8TB

Using Rabin fingerprint based

variable sized chunker

SHA-1 hash, size, compressed
size, offset in file, file information
logged for each chunk

*Number of authors (users) assumed in 100s but not
quantifiable due to delegated write access. '"Number of
(authors) users limited to < 10 server administrators.

Slide 6

Key Design Decisions

< Deduplication granularity and data chunking

L (4

Chunk-level: variable sized chunking, large chunk size (~80KB)

Modifications to Rabin fingerprint based chunking to achieve more
uniform chunk size distribution

Slide 7

Average Chunk Size

+ Compression compensates
for savings decrease with
higher chunk size

m Compression is more efficient
on larger chunks

« Use larger chunk size of
~64KB

= Without sacrificing dedup
savings

Dedup Savings

m Reduce chunk metadata in
the system

80%

60%

40%

20%

0%

Dedup savings loss Dedup savings preserved
w/0 compression w/ compression

O

Chunk Size/Comp. variations

GFS-US dataset

Slide 9

Chunk Reference Count

120% 4 1E+7
= # unigue chunks in bin

| === CDF by % of all chunks (bytes)
—CDF by % of all chunks (count)

[y
m
+

[«)]

4 1E+5
-4 1E+4
| 163 GFS-Japan-1 dataset
- 1E+2

4 1E+1

Number of chunks (logl0 scale)

1E+0

™ W o D o B N
KPS
Chunk duplication count bins - powers of 2

<+ Majority of duplicate bytes reside in middle portion of distribution

= Not sufficient to dedup just high ref count chunks

<+ System needs to deduplicate all chunks that appear more than once

= Implications on the chunk hash index design

Slide 10

Basic version of fingerprint based

N
7

% Skewed chunk size
distribution

m Small chunk size =>
Increase in chunk
metadata in the system

= Large chunks => reduced \
dedup savings, benefit of

caching

Frequency distribution

Vv

min Chunk size max

% Forced chunk boundaries

m Forced boundary at max chunk size is content independent, hence
may reduce dedup savings

Slide 11

>

Regression Chunking Algorithm

Goal 1: To obtain uniform chunk size distribution
Goal 2: Reduce forced chunk boundaries at max size

Basic idea

= When max chunk size is reached, relax match condition to some
suffix of bit pattern P

= Match |P| - i bits of P, with decreasing priority for i=0,1, ..., k
Reduces probabillity of forced boundary at max size
s 2x10-3 for k=1, 10-1* for k=4

Slide 12

Regression Chunking Algorithm contd.

< Maintains chunking throughput performance

= Core matching loop checks against smallest prefix, break out only if
match occurs

= Single pass over data: remember match position for each relaxed
suffix match

Slide 13

Regression Chunking Performance

SE+6 RC 100%
.
4g+¢ | EEBasic chunking 80% E
€ RC:CDF O
S3E+6 60% &
S e==Basic chunking:CDF 3
-EZE+5 40% ©
g S
G 1E+6 20% &
o

OE+0 0%

0 16 32 48 64 80 96 112 128
Chunk size (bins of 4KB width)

GFS-US dataset

Uniform chunk size distribution Dedup savings improvement
Dedup Space Savings
Dataset Basic Regression RC
Chunking | Chunking (RC) | Benefit
Audio-Video 2.98% 2.98% 0%
PDF 9.96% 12.70% 27.5%
Office-2007 35.82% 36.65% 2.3%
VHD 48.64% 51.39% 5.65%
GFS-US 36.14% 37.2% 2.9%

Slide 14

Key Design Decisions

*

&

o0

< Deduplication resource usage scaling slowly with data size
= Reduced chunk metadata
= RAM frugal chunk hash index
= Data partitioning

Slide 15

Chunk Indexing

+ Log-structured organization

x Chunk metadata organized in
log-structured manner on disk

= Insertions aggregated in write

buffer in RAM and appended to

log in single 1/O
<+ Low RAM footprint index

s Specialized hash table using
variant of cuckoo hashing

= 2-byte signature, 4-byte pointer

per entry => 6-bytes of RAM
per indexed chunk

Lookup(key)

Low RAM-footprint ind
#)

had

Compact key / locator pair

Insert(key, value)

Re

cache.fi

refetch cache

Key / locator pair

Fetch

unk metadata

Update
cache

v

Chunk Indexing contd.

% Prefetch Cache

= Prefetch chunk mappings for next 100-1000 chunks in same I/O
= Exploit sequential predictability of chunk hash lookups

m Locality expected to be less than in backup workloads

= Prefetch cache sized at 100,000 entries (5MB of RAM)
= About 1% of index lookups hitting disk (on all datasets evaluated)

m Hash table acts as a bloom filter on new chunk lookups

Slide 17

Data Partitioning and Reconciliation

< Two-phase deduplication

= Divide the data into disjoint partitions, and perform deduplication
within each partition

= Reconcile duplicates across partitions
< Reconciliation algorithm

= [terative procedure

= Grow the set of reconciled partitions by considering some number
of unreconciled partitions at a time

<+ Reconciliation Strategy
= Selective reconciliation
m Delayed reconciliation

Slide 18

Reconciliation of Data Partitions

Compare unreconciled partitions with
each partition in reconciled set

— T,

[|

L) L)
Y Y

Reconciled partitions Unreconciled partitions (k)
(indexed in RAM)

k = #unreconciled partitions considered per iteration; provides
trade-off between memory usage and reconciliation speed

Slide 19

Efficient partitioning strategies

» Partition data and dedup within
each partition

Dedup Space Savings
= How close is dedup savings within patase Global | Clustered by
- P2 File type | File path
partitions to that of global dedup? ~Ggs-us 36.7% | 356% | 243%
o _] GFS-Japan-1 41.1% 38.9% 32.3%
< Partitioning by file type GFS-Japan-2 39.1% | 36.7% | 24.8%
HF-Amsterdam 15.2% 14.7% 13.6%
- HF-Dublin 168% | 16.2% 14.6%
m Dedup savings almost as good as HEJapon 06% | 190% | 120

with global dedup

L _ Dedup amenable to
Partitioning by file path partitioned processing

= Partition by directory sub-trees (each partition < 10% of total bytes)

)

*

= Not as effective as partitioning by file type for preserving dedup
savings

&

L)

*

Partitioning by system/volume

L)

Slide 20

System Overview

« Data path
_ Clients Chunking module
= Dedup filter c n i
s Chunk cache : Jobs
Filter Local Index

m File stub tx update cache
« Deduplication pipeline Sorage —

= Data Chunking File stubs -‘ é E Metadata IChunks "

. Tl i
| I

= Index lookups + insertions S ———

e -

m Chunk Store insertions

+ Background jobs
m Garbage collection (in Chunk Store)
= Data scrubbing

Slide 21

Deduplication and on-disk structures

can files according to policy

N

Chunk files intelligently to maximize recurring chunks
3. Identify common data chunks
Metadata Data Stream Metadata Data Stream
) ™~
2 2
= Standard Info Al B [C[M| N = Standard Info A| B [C| X |Y

Phase II - Optimize the target files

4. Single-instance data chunks in file stream order
5. Create stream metadata
6. Truncate original file data stream

Chunk Store
Stream
Metadata Chunk Stream A
=
z
- Standard Info | | Sparse | | Reparse Data » Metadata
ChunklDs, Offsets Chunks
Y
» A B CM M
Metadata Chunk Stream B
[|
L Ll x|y
Standard Info | | Sparse | | Reparse Data * Metadata | - :
PA ChunkIDs, Offsets [m
GE

22

Wiite path to Optimized File

File Record (sparse) Chunk 5tore
> Pre write File Layout Reparse Buffer gsweam [T ToT T o Tel ¢ [&ln
{ Streamlid} Map
I
Write 10
¥
Mew Data

* Reduce latency for small
A B C D E F G H - .
writes to large files (e.g. OS
Image patching scenario)
R R R . .
* Recall granularity grows with

@ Write flow EC | R EE EF file size :
* Incremental Dedup will later

optimize the new data

Old Data * GC cleans up unreferenced
chunks (chunk “D” in
S I I M R B example)
New Data
File Record (sparse) Chunk Store
_ _ Reparse Buffer _| Stream | _ A Bl ¢ D E| F |G |H -
(®Post Write File Layout | (recl s, i) [| _top | .
MNew Data

Perf. Improvement: Chunk Compression

+ Compression/decompression can 100%
have a significant perf impact 80%

GFS-US dataset

.
-
. -
. -

<+ Compression savings is skewed 60% |

m 50% of unique chunks responsible S

: : 40%
for 86% of compression savings ’

Unique chunks (bytes)
- « =Unigue chunks (count)
= COompression savings
0%’|.|||||||||||||||||||
<+ Solution: selective compression 0 010203040506 070803 1
Compression ratio
m Reduces cost of compression for large fraction of chunks

= 31% of chunks do not compress at ~ 20%
all

= While preserving most of compression savings

m Reduces decompression costs (reduce CPU pressure during heavy reads)
m Also: use a cache for decompressed data (important for hotspots)

m Heuristics for determining which chunks should not be compressed

Slide 24

Performance Evaluation — Throughput

< Quad-core Intel Xeon 2.27GHz machine, 12GB RAM

< Four scenarios, from combinations of

= Index type (pure in-memory vs. memory/disk)

= Data partitioning (off or on)

< Deduplication throughput

m 25-30 MB/s (single thread performance)

Regular | Optimized | Regular | Optimized
Index index index w/ | index w/
(Baseline) partitions| partitions
Throughput | 30.6 28.2 27.6 26.5
(MB/s)
Partitioning | 1 1 3 3

factor

GFS-US dataset

= Only about 10% decrease from baseline to least memory case

= Three orders of magnitude higher than typical data ingestion rates

of 0.03 MB/sec (Leung, et al.)

Slide 25

Performance Evaluation — Resource Usage

: Regular | Optimized | Regular | Optimized
’:’ RAM frugallty Index index index w/ | index w/
(Baseline) partitions| partitions
= Index memory usage Partitionine | 1] 3 3
reduction of 24x vs. baseline _factor
Index entry | 48 6 48 6
o il ' size (bytes)
% LOW CPU Utlllzatlon Index mem- | 931IMB | 116MB 310MB | 39MB
ory usage
= 30-40% per core Single core | 31.2% | 352% | 36.8% | 40.8%

utilization

= Enough room available for

serving primary workload in multi-core modern file servers

+ Low disk usage

= Median disk queue depth is zero in all cases

m At 75-th percentile, increase by 2-3; impact of index lookups going

to disk and/or reconciliation

Slide 26

Performance Evaluation — Parallelizability

« Parallel processing across datasets and CPU cores/disks
m Disk diverse datasets
m One session per volume in current implementation

= One CPU core allocated per dedup session

m One process and thread per deduplication session

m No cross-dependencies in deduplication sessions (each session uses a
separate index)

m Aggregate dedup throughput scales as expected with number of cores
(provided sufficient RAM is available)

« Workload scheduler
m Assigns jobs (deduplication, GC, scrubbing) with CPU cores

= Allocates memory per job
m Keeps track of job activity (cancel jobs on memory or CPU pressure)

Slide 27

Summary

< Large scale study of primary data dedup
= 7/TB of data across 15 globally distributed servers in a large enterprise

< Primary data deduplication in Windows Server 2012
= Design decisions driven by data analysis findings

* Primary workload friendly

= Scale deduplication processing resource usage with data size
s CPU/memory/disk 10

s Data chunking and compression
= Chunk indexing
= Data partitioning and reconciliation

D)

>

Primary data serving, reliability, and resiliency aspects not
covered Iin this paper

