
1

Thanh Do, Tyler Harter, Yingchao Liu,
Andrea C. Arpaci-Dusseau, 	

and Remzi H. Arpaci-Dusseau	

	

Haryadi S. Gunawi	

HARDFS:���
Hardening HDFS with���

Selective and Lightweight Versioning	

Cloud Reliability	

2

q Cloud systems	

§  Complex software	

§  Thousands of commodity machines	

§  “Rare failures become frequent” [Hamilton]	

q Failure detection and recovery	

§  “… has to come from the software” [Dean]	

§  “… must be a first-class operation” [Ramakrishnan et al.]	

3

Fail-stop failures	

q Machine crashes, disk failures	

q Pretty much handled	

q Current systems have sophisticated crash-
recovery machineries	

§  Data replication	

§  Logging	

§  Fail-over	

Fail-silent failures	

q Exhibits incorrect behaviors instead of crashing	

q Caused by memory corruption or software bugs	

q Crash recovery is useless if fault can spread	

4

Master	

Workers	

5

Fail-silent failure headlines	

Current approaches	

6

Replicated state machine	

using BFT library	

Ver. 1	
 Ver.2	

Ver. 3	
Agree?	

N-Version programing	

•  High resource consumption	

•  High engineering effort	

•  Rare deployment	

Selective and Lightweight
Versioning (SLEEVE)	

q  2nd version models basic protocols of the system	

q  Detects and isolates fail-silent behaviors	

q  Exploits crash recovery machinery for recovery	

7

Master	

Workers	

Trusted	

sources	

Reloading state	

during reboot	

8

Selective and lightweight
versioning (SLEEVE)	

q Selective	

§  Goal: small engineering effort	

§  Protects important parts	

-  Bug sensitive	

-  Frequently changed	

-  Currently unprotected 	

q Lightweight	

§  Avoids replicating full state	

§  Encodes states to reduce space	

A	
B	

C	
D	

A	

D	

0 1 0 0
1 0 1 0
0 1 0 1

9

HARDFS	

q HARDFS - hardened version HDFS:	

§  Namespace management	

§  Replica management	

§  Read/write protocol	

q HARDFS detects and recovers from:	

§  90% of the faults caused by random memory corruption	

§  100% of the faults caused by targeted memory corruption	

§  5 injected software bugs	

q Fast recovery using micro-recovery	

§  3 orders of magnitude faster than full reboot	

q Little space and performance overhead	

10

Outline	

ü  Introduction	

q HARDFS Design	

q HARDFS Implementation	

q Evaluation 	

q Conclusion	

Case study: ���
namespace integrity	

11

NameNode	

Client	

Create(F)	

F	

F	

Normal Operation	

txCreat(F)	

NameNode	

Client	

exists(F)	

F	

No	

G	

Corrupted HDFS	

Client	

exists(F)	

F	

Yes	

G	

F	

F	

HARDFS	

NameNode	

Incorrect behavior	

Trusted	

source	

SLEEVE layer components	

12

•  Interposition module	

•  State manager	

•  Action verifier	

•  Recovery module	

	

State manager	

q Replicates subset of state of the main version	

§  Directory entries without modification time	

q Adds new state incrementally	

§  Adds permissions for security checks	

q Understands semantics of various protocol
messages and thread events to update state
correctly	

q Compresses state using compact encoding	

13

Naïve: Full replication	

q HDFS master manages millions of files	

q 100% memory overhead reduces HDFS
master scalability [;login; ‘11]	

14

FF
100% memory overhead	

Lightweight: ���
Counting Bloom Filters	

q Space-efficient data structure	

q Supports 3 APIs	

§  insert(“A fact”)	

§  delete(“A fact”)	

§  exists(“A fact”)	

15

Lightweight: ���
Counting Bloom Filters	

q  Suitable for boolean checking	

§ Does F exist?	

§ Does F has length X?	

§ Has block B been allocated?	
 16

 “F is 10 bytes”	

Disagreement 	

detected!	

F:10	

insert(“F is 10 bytes”)	

F:10	
 F:5	
 F:10	

exists(“F is 5 bytes”) à NO	

 “Give me length of F”	

Challenges of using ���
Counting Bloom Filters	

q Hard to check stateful system	

q False positives	

17

Non-boolean verification	

18

 “F is 20 bytes”	

F:10	
 F:10	
 F:10	
 F:20	

X = returnSize(F)	

delete(F:X)	

insert(F:20)	

Bloom filter does	

not support this API	

Before	
 After	

Non-boolean verification	

19

 “F is 20 bytes”	

F:10	
 F:10	

X ç MainVersion.returnSize(F);	

IF exists(F:X)	

 	
delete(F:X);	

 	
insert(F:20);	

ELSE	

 	
initiate recovery;	

Ask-Then-Check	

F:10	
 F:20	

Before	
 After	

Stateful verification	

20

Bloom Filter (boolean verification)	

Checking stateful systems	

Ask Then Check	

Dealing with False positive	

q  Bloom filters can give false positive	

§  4 per billion	

§  1 false positive per month (given 100 op/s)	

q  Only leads to unnecessary recovery	

21

F	
 G	

Trusted	

source	

F	

F	

Reloading 	

state	

22

Outline	

ü  Introduction	

q HARDFS Design	

ü  Lightweight	

§  Selective	

§  Recovery	

q HARDFS Implementation	

q Evaluation 	

q Conclusion	

Selective Checks	

q  Goals: small engineering effort	

q  Selectively chooses namespace protection	

q  Excludes security checks	
 23

Client	

create(F)	

G	
 F	
F	

HDFS Master	

F	

txCreate(F)	

Client	

Operation log	

exists(F)	

Disagreement detected!	

No	
 Yes	

X ß mainVersion.exists(F);	

Y ß bloomFilter.exists(F);	

If X != Y then	

 handleDisagreement();	

Incorrect action examples	

24

Create(F)	

txCreate(F)	

Create(F)	

reject	

Create(F)	

txCreate(D/F)	

txMkdir(D)	

txCreate(F)	

Create(D/F)	
 Mkdir(D)	

Normal correct action	
 Corrupt action	
 Missing action	

Orphan action	
 Out-of-order action	

All of these happen in practice	

Action verifier	

q Set of micro-checks to detect incorrect

actions of the main version	

q Mechanisms:	

§  Expected-action list	

§  Actions dependency checking	

§  Timeout	

§  Domain knowledge to handle disagreement	

25

26

Outline	

ü  Introduction	

q HARDFS Design	

ü  Lightweight	

ü  Selective	

q  Recovery	

q HARDFS Implementation	

q Evaluation 	

q Conclusion	

Recovery	

q Crash is good provided no fault propagation	

q Detects and turns bad behaviors into crashes	

q Exploits HDFS crash recovery machineries	

27

Master	

Workers	

Trusted	

sources	

Reloading state	

during reboot	

HARDFS Recovery	

	

q Full recovery (crash and reboot)	

q Micro-recovery	

§  Repairing the main version	

§  Repairing the 2nd version	

28

Crash and Reboot	

q  Full state is reconstructed from trusted sources	

q  Full recovery may be expensive	

§  Restarting an HDFS master could take hours	

29

Reloading 	

Full state	

Micro-recovery	

q  Repairs only corrupted state from trusted sources	

q  Falls back to full reboot when micro-recovery fails	

30

Repairing main version	

31

Main Version	

	

2nd Version	

	

F:100	

Trusted source: checkpoint file	

F:200	
 F:100	

Direct update	

F:200 ç F:100	
F:100	

Repairing 2nd version	

32

Main Version	

	

2nd Version	

	

F:100	

Trusted source: checkpoint file	

F:200	

Must:	

1. Delete(“F is 200 bytes”)	

2. Insert(“F is 100 bytes”)	
F:100	

Solution:	

1. Start with an empty BF	

2. Add facts as they are verified	

F:100	

33

Outline	

ü  Introduction	

ü HARDFS Design	

q HARDFS Implementation	

q Evaluation 	

q Conclusion	

Implementation	

q Hardens three functionalities of HDFS	

§  Namespace management (HARDFS-N)	

§  Replica management (HARDFS-R)	

§  Read/write protocol of datanodes (HARDFS-D)	

q Uses 3 Bloom filters API	

§  insert(“a fact”), delete(“a fact”), exists(“a fact”)	

q Uses ask-then-check for non-boolean
verification	

34

Protecting ���
namespace integrity	

q Guards namespace structures necessary for

reaching data: 	

§  File hierarchy 	

§  File-to-block mapping	

§  File length information	

q Detects and recovers from namespace-
related problems:	

§  Corrupt file-to-block mapping	

§  Unreachable files	

35

Namespace management	

Message	
 Logic of the secondary version	

Create(F):	

Client request NN to create F	

Entry: ���
 If exists(F) Then reject; 	

 Else	

 insert(F); 	

 generateAction(txCreate[F]); 	

Return: check response;	

AddBlock(F):	

client requests NN to allocate
a block to file F 	

	

Entry: 	

 F:X = ask-then-check(F); 	

Return: 	

 B = addBlk(F);���
 If exists(F) & !exists(B) Then 	

 X′ = X ∪ {B};	

 delete(F:X);	

 insert(F:X′)	

 insert(B@0); 	

 Else declare error; 	

36

37

Outline	

ü  Introduction	

ü HARDFS Design	

ü HARDFS Implementation	

q Evaluation and Conclusion	

Evaluation	

q Is HARDFS robust against fail-silent faults?	

q How much time and space overhead incurred?	

q Is micro-recovery efficient?	

q How much engineering effort required?	

38

Random memory
corruption results	

Outcome	
 HDFS	
 HARDFS	

Silent failure	
 117	
 9	

Detect and reboot	
 -	
 140	

Detect and micro-recover	
 -	
 107	

Crash	
 133	
 268	

Hang	
 22	
 16	

No problem observed	
 728	
 460	

39

q # fail-silent failures reduced by factor of 10	

q Crash happens twice as often 	

Silent failures	

FIELD	
 HDFS	
 HARDFS	

pathname	
 95	
 0	

replication	
 1	
 0	

modification time	
 6	
 8	

permission	
 3	
 0	

block size	
 12	
 1	

40

0	

100	

200	

300	

400	

500	

600	

700	

800	

200K	 400K	 600K	 800K	 1000K	

M
em

or
y	
al
lo
ca
te
d	
(M

B)
	

File	 system	 size	 (number	 of	 files)	
HDFS	 HARDFS	 +	 Concrete	 State	 HARDFS	 +	 Bloom	 Filters	

Namepsace management
Space Overhead	

41

HARDFS with Bloom filter	

 incurs little space overhead (2.6%)	

Recovery Time	

42

1	

10	

100	

1000	

10000	

200K	 400K	 600K	 800K	 1000K	 Re
co
ve
ry
	 T
im

e	
(s
ec
on

ds
)	

File	 system	 size	 (number	 of	 files)	

Reboot	 Micro-‐recovery	 OpGmized	 Micro-‐recovery	

•  Rebooting NameNode is expensive	

•  Micro-recovery is 3 order of magnitude faster	

Complexity (LOC)	

Functionality	
 HDFS	
 HARDFS	

Namespace management	
 10114	
 1751	
 17%	

Replica management	
 2342	
 934	
 40%	

Read/write protocol	
 5050	
 944	
 19%	

Others	
 13339	
 -	
 -	

43

•  Lightweight versions are smaller	

Injecting software bugs	

Bug	
 Year	
 Priority	
 Description	
 HARDFS	

HADOOP-1135	
 2007	
 Major	
 Blocks in block report wrongly
marked for deletion	
 ✔	

HADOOP-3002 	
 2008	
 Blocker	
 Blocks removed during safemode 	
 ✔	

HDFS-900 	
 2010	
 Blocker	
 Valid replica deleted rather than

corrupt replica 	
 ✔	

HDFS-1250 	
 2010	
 Major	
 Namenode processes block

report from dead datanode 	
 ✔	

HDFS-3087 	
 2012	
 Critical	
 Decommission before replication

during namenode restart 	
 ✔	

44

Conclusion	

q Crashing is good	

q To die (and be reborn) is better than to lie	

q But lies do happen in reality	

q HARDFS turns lies into crashes	

q Leverages existing crash recovery techniques
to resurrect 	

45

Thank you!���
Questions?	

46

http://research.cs.wisc.edu/adsl/	

http://ucare.cs.uchicago.edu/	

http://wisdom.cs.wisc.edu/	

